Composite Stress-Strain Relations for Elastoplastic Solids

  • William Prager
Conference paper
Part of the IUTAM Symposia book series (IUTAM)


The paper explores the use of composite stress-strain relations for inviscid elastoplastic behavior. Their predictions are compared with the observed behavior of thin-walled tubes of mild steel in combined tension and torsion. It is shown that even very simple stress-strain relations of this type furnish predictions that are in markedly better agreement with experiments than those of the Prandtl-Reuss theory. Finally, the extent is discussed to which use of the considered stress-strain relations implies a unique solution to a typical boundary value problem in plasticity.


Mild Steel Strain Increment Frictional Resistance Stress Vector Spring Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alfrey, T., Jr.: Mechanical Behavior of High Polymers. New York: Inter-science Publishers. 1948.Google Scholar
  2. [2]
    Ivlev, D. D.: The Theory of Complex Media. Doklady Ak. Nauk SSSR 148, 64–67 (1963);Google Scholar
  3. Ivlev, D. D.: Soviet Physics-Doklady 8, 38–30 (1963).ADSGoogle Scholar
  4. [3]
    Mises, R. vox: Mechanik der festen Körper im plastisch deformablen Zustand. Göttinger Nachrichten, math. phys. Kl. 1913, 582–592.Google Scholar
  5. [4]
    Prandtl, L.: Spannungsverteilung in plastischen Körpern. Proc. 1st Internatl Congr. Appl. Mech., pp. 43–54. Delft: 1924.Google Scholar
  6. Reuss, E.: Berücksichtigung der elastischen Formänderungen in der Plastizitätstheorie. Z. angew. Math. Mech. 10, 266–274 (1930).MATHGoogle Scholar
  7. [5]
    Hohenemser, K., and W. Prager: Beitrag zur Mechanik des bildsamen Verhaltens von Flußstahl. Z. angew. Math. Mech. 12, 1–14 (1932).Google Scholar
  8. [6]
    Hencii, H.: Zur Theorie plastischer Deformation und der hierdurch im Material hervorgerufenen Nachspannungen. Z. angew. Math. Mech. 4, 323–334 (1924).Google Scholar
  9. [7]
    Feigen, M.: Inelastic behavior under combined tension and torsion. Proc. 2nd U. S. Natl Congr. Appl. Mech., pp. 469–476. New York: ASME 1955.Google Scholar
  10. [8]
    Kadashevich, I. I., and V. V. Novozallov: The Theory of Plasticity which Takes into Account Residual Microstresses. Prikl. Mat. Mekh. 22, 78–89 (1958);Google Scholar
  11. Kadashevich, I. I., and V. V. Novozallov: J. Appl. Math. Mech. 22, 104–118 (1958).MathSciNetMATHCrossRefGoogle Scholar
  12. [9]
    Melan, E.: Zur Plastizität des räumlichen Kontinuums. Ing.-Arch. 9, 116–126 (1938).MATHCrossRefGoogle Scholar
  13. [10]
    Prager, W.: Recent Developments in the Mathematical Theory of Plasticity. J. Appl. Phys. 20, 235–241 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [11]
    Drucker, D. C.: On Uniqueness in the Theory of Plasticity. Q. Appl. Math. 14, 35–42 (1956).MathSciNetMATHGoogle Scholar
  15. [12]
    Drucker, D. C.: Some Implications of Work Hardening and Ideal Plasticity. Q. Appl. Math. 7, 411–418 (1950).MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • William Prager
    • 1
  1. 1.La JollaUSA

Personalised recommendations