A continuum theory of deformation and flow is presented, that is based on the principle of conservation of mass, the first and second law of thermodynamics, the concepts of a local thermodynamic state and of a local geometric natural reference state, a principle of determinism and on a postulate concerning the production of entropy. As special cases are considered gases, elastic materials, simple solids and liquids. Stress is in this theory a thermodynamically defined quantity.


Energy Dissipation Internal Energy Thermodynamic State Thermodynamic System Dissipation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Besseling, J. F.: Nat. Aero. Res. Inst. (Amsterdam) Report S-410, 1953.Google Scholar
  2. [2]
    Besseling, J. F.: J. Appl. Mech. 25, 4, 529 (1958).MATHGoogle Scholar
  3. [3]
    Besseling, J. F.: Aeronautics and Astronautics 1960, 247–266.Google Scholar
  4. [4]
    Besseling, J. F.: In: The Folke Odqvist Volume. Stockholm: Almqvist and Wiksell/Gebers. 1966.Google Scholar
  5. [5]
    Coleman, B. D., and W. Noll: Arch. Ratl Mech. Anal. 4, 97–128 (1959).MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Eckart, C.: Phys. Rev. 73, 2, 373–382 (1948).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Gilbarg, D., and D. Paolucci: J. Ratl Mech. Anal. 2, 617–642 (1953).MathSciNetMATHGoogle Scholar
  8. [8]
    Jaumann, G.: Sitzungs-Ber. Akad. Wiss. (Wien) 110, 120 (1911).Google Scholar
  9. [9]
    Prandtl, L.: Proc. 1st Int. Congr. Appl. Mech. (Delft) 43 (1924).Google Scholar
  10. [10]
    Reuss, A.: Z. A. M. M. 10, 266 (1930).MATHGoogle Scholar
  11. [11]
    Truesdell, C.: J. Ratl Mech. Anal. 1, 1, 125–300MathSciNetMATHGoogle Scholar
  12. Truesdell, C.: J. Ratl Mech. Anal. 1, 1, 593–616 (1952).Google Scholar
  13. [12]
    Truesdell, C. and R. A. Toupin: Handbuch der Physik. Vol. III/1. Berlin—GöttingenHeidelberg: Springer. 1960.MATHGoogle Scholar
  14. [13]
    Truesdell, C. and W. Noll: Handbuch der Physik. Vol. III/3. Berlin—GöttingenHeidelberg: Springer. 1965.Google Scholar
  15. [14]
    Ziegler, H.: Ing. Arch. 30, 410 (1961).MathSciNetCrossRefGoogle Scholar
  16. [15]
    Ziegler, H.: Rheologica Acta 2 (3), 230–235 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • J. F. Besseling
    • 1
  1. 1.DelftNetherlands

Personalised recommendations