Couple-Stresses in the Theory of Thermoelasticity

  • W. Nowacki
Part of the IUTAM Symposia book series (IUTAM)


The aim of the present paper is to generalize some theorems on the coupled thermoelasticity of a medium characterized by two vectors independent from each other: the displacement vector u and the rotation vector ω.

Basing on the thermodynamics of irreversible processes the constitutive equations and the expanded equation of heat conductivity for an isotropic medium are derived.

The author succeeded in obtaining a basic system of differential equations of coupled thermoelasticity. The propagation of thermoelastic waves in an unbounded medium is discussed.

Moreover, a generalization of the virtual work principle to dynamic problem of coupled thermoelasticity is advanced.

Finally, the reciprocity theorem is derived and some conclusions resulting from this theorem are discussed.


Laplace Transformation Rotation Vector Homogeneous Boundary Condition Infinite Medium Virtual Work Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Voigt, W.: Theoretische Studien über die Elastizitätsverhältnisse der Kristalle. Abh. Ges. Wiss. Göttingen 34 (1887).Google Scholar
  2. [2]
    Cosserat, E., and F. Cosserat: Théorie des corps deformables. Paris: A. Hermann et Fils. 1909.Google Scholar
  3. [3]
    Truesdell, C., and R. A. Toupin: The Classical Field Theories. Encyclopedia of Physics, vol. III/1, Sec. 200, 203, 205. Berlin-Göttingen-Heidelberg: Springer. 1960.Google Scholar
  4. [4]
    Aero, E. L., and E. V. Kuvshinskii: Fundamental Equations of the Theory of Elastic Media with Rotationally Interacting Particles. Fizika Tverdogo Tela, 2, 1399 (1960). [In Russian]Google Scholar
  5. [5).
    Grioli, G.: Elasticita asimetrica. Ann Mat. pura ed appl., Ser. IV 50, 389 (1960)MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Touppn R. A.: Elastic Materials with Couple Stresses. Arch. Ratl Mech. Anal. 11, 385 (1962).Google Scholar
  7. [7]
    Mindlin, R. D., and H. F. Tiersten: Effects of Couple-stresses in Linear Elasticity. Arch. Ratl Mech. Anal. 11, 415 (1962).MathSciNetMATHGoogle Scholar
  8. [8]
    Kiinseiinskis, E. V., and E. L. Aero: Continuum Theory of Asymmetric Elasticity. Fizika Tverdogo Tela 5, 2592 (1963).Google Scholar
  9. [9]
    Palmov, N. A.: Fundamental Equations of the Theory of Asymmetric Elasticity. Prikl. Mat. Mekh. 28, 401 (1964).MathSciNetGoogle Scholar
  10. [10]
    Erlegen, A. C., and E. S. Suhuei: Nonlinear Theory of Micro-Elastic Solids. Int. J. Engng Sci. 2, 189 (1964); 2, 389 (1964).Google Scholar
  11. [11]
    Green, A. E., and I. E. Adkins: Large Elastic Deformations. Oxford: 1960.Google Scholar
  12. [12]
    Celadwick, P.: Thermoelasticity. The Dynamical Theory “Progress in Solid Mechanics”, vol. 1, Amsterdam: 1960.Google Scholar
  13. [13]
    Blot, M. A.: Thermoelastictiy and Irreversible Thermodynamics. J. Appl. Phys. 27 (1956).Google Scholar
  14. [14]
    Weiner, J. H.: A Uniqueness Theorem for the Coupled Thermoelastic Problem. J. Appl. Math. 15 (1958).Google Scholar
  15. [15]
    Iovescu-Cazimir, V.: Problem of Linear Coupled Thermoelasticity. Uniqueness Theorems. Bull. Acad. Polon. Sci., Ser. Sci. Techn. 12, 12 (1964).Google Scholar
  16. [16]
    Ionescu-Cazimir, V., Problem of Linear Coupled Thermoelastictiy. Reciprocal Theorems for the Dynamic Problem of Thermoelasticity. Bull. Acad. Polon. Sci., Ser. Sci. Techn. 12, 9 (1964).Google Scholar
  17. [17]
    Trefftz, E.: Mathematische Elastizitätstheorie. In: Handbuch der Physik, vol. VI. Berlin: Springer. 1926.Google Scholar
  18. [18]
    Maysel, V. M.: Thermoelastic Problems. Kiev: 1951. [In Russian]Google Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • W. Nowacki
    • 1
  1. 1.WarsawPoland

Personalised recommendations