Advertisement

Na+-Dependent Transport of Carbohydrates through Intestinal Epithelium

  • Robert K. Crane
Conference paper

Abstract

Several years ago, my colleagues and I presented a concept of the brush border membrane of the epithelial cell as a digestive-absorptive surface in which the elements responsible for digestion and absorption were postulated to be arranged in ordered proximity to one another (Crane, Miller and Bihlekr 1961, Crane 1962). The disaccharidases were represented as being an integral part of the outer protein coat of the membrane and the diffusion barrier to the entry of monosaccharides into the epithelial cells was assumed, in line with current concepts of membrane function, to be the lipid leaflet. As a consequence of experiments carried out under conditions of limited tissue energy supplies, we believed that the entry of sugars across the brush border membrane was identified as the primary site of Na+ involvement in the overall process of active transport, and we interpreted our experiments to have “established the existence of a substrate-specific, Na+-dependent and energy-independent process mediating the rapid equilibration of sugars between the cells and the medium” (Bihler, Hawkins and Crane 1962). Interaction of glucose and its analogs with a specific binding site on a mobile carrier was postulated to account for the specificity of the overall process (Crane 1960) and for the competitive nature of phlorizin inhibition (Alvarado and Crane 1962).

Keywords

Mobile Carrier Brush Border Membrane Sugar Transport Loaded Carrier Dependent Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allfrey, V. G., R. Mendt, J. W. Hopkins, and A. E. Mirsky, 1961: Proc. Natl. Acad. Sci. 47, 907.PubMedCrossRefGoogle Scholar
  2. Alvarado, F., and R. K. Crane, 1962: Biochim. Biophys. Acta 56, 170.PubMedCrossRefGoogle Scholar
  3. Asano, T., 1964: Amer. J. Physiol. 207, 415.PubMedGoogle Scholar
  4. Barry, R. J. C., S. Dikstein, S. Matthews, and D. H. Smyth, 1960: J. Physiol., London, 155, 17.Google Scholar
  5. Bihler, I., and R. K. Crane, 1962: Biochim. Biophys. Acta 59, 78.PubMedCrossRefGoogle Scholar
  6. Bihler, I., K. A. Hawkins, and R. K. Crane, 1962: Biochim. Biophys. Acta 59, 94.PubMedCrossRefGoogle Scholar
  7. Bosackova, J., and R. K. Crane, 1965 a: Biochim. Biophys. Acta 102, 423.PubMedCrossRefGoogle Scholar
  8. Bosackova, J., and R. K. Crane, 1965 b: Biochim. Biophys. Acta 102, 436.PubMedCrossRefGoogle Scholar
  9. Christensen, H. N., 1962: Biological Transport, W. A. Benjamin, New York.Google Scholar
  10. Clarkson, T. W., and A. Rothstein, 1960: Amer. J. Physiol. 199, 898.PubMedGoogle Scholar
  11. Crane, R. K., 1960: Physiol. Rev. 40, 789.PubMedGoogle Scholar
  12. Crane, R. K., 1962: Fed. Proc. 21, 891.PubMedGoogle Scholar
  13. Crane, R. K., 1964: Biochem. Biophys. Res. Comm. 17, 481.CrossRefGoogle Scholar
  14. Crane, R. K., 1965: Fed. Proc. 24, 1000.PubMedGoogle Scholar
  15. Crane, R. K., D. Miller, and I. Bihler, 1961: Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk, eds., Czechoslovak Acad, of Science Press, Prague, p. 439.Google Scholar
  16. Crane, R. K., G. Forstner, and A. Eichholz, 1965: Biochim. Biophys. Acta 109, 467.PubMedCrossRefGoogle Scholar
  17. Csaky, T. Z., 1961: Amer. J. Physiol. 201, 999.PubMedGoogle Scholar
  18. Csaky, T. Z., 1963: Fed. Proc. 22, 3.Google Scholar
  19. Csaky, T. Z., 1964: Gastroenterology 47, 201.Google Scholar
  20. Csaky, T. Z., and M. Thale, 1960: J. Physiol., London, 151, 59.Google Scholar
  21. Csaky, T. Z., and L. Zollicoffer, 1960: Amer. J. Physiol. 198, 1056.PubMedGoogle Scholar
  22. Cur ran, P., 1965: Fed. Proc. 24, 993.PubMedGoogle Scholar
  23. Fox, M., S. Thier, L. Rosenberg, and S. Segal, 1964: Biochim. Biophys. Acta 79, 167.PubMedGoogle Scholar
  24. Holt, P. R., 1964: Amer. J. Physiol. 207, 1.PubMedGoogle Scholar
  25. Kotyk, A., and A. Kleinzelle r, 1961: Biochim. Biophys. Acta 54, 367.PubMedCrossRefGoogle Scholar
  26. Kromphardt, H., H. Grobecker, K. Ring, and E. Heinz, 1963: Biochim. Biophys. Acta 74, 551.CrossRefGoogle Scholar
  27. Lack, L., and I. M. Weiner, 1961: Amer. J. Physiol. 200, 313.PubMedGoogle Scholar
  28. Lyon, I., and R. K. Crane, 1966: Biochim. Biophys. Acta 112, 278.PubMedCrossRefGoogle Scholar
  29. Nathans, D., D. F. Tapley, and J. E. Ross, 1960: Biochim. Biophys. Acta 41, 271.PubMedCrossRefGoogle Scholar
  30. Parrish, J., and D. M. Kipnis, 1964: J. Clin. Invest. 43, 1994.PubMedCrossRefGoogle Scholar
  31. Playoust, M. R., and K. J. Isselbacher, 1964: J. Clin. Invest. 43, 467.PubMedCrossRefGoogle Scholar
  32. Riklis, E., and J. H. Quastel, 1958: Can. J. Biochem. Physiol. 36, 347.PubMedCrossRefGoogle Scholar
  33. Rosenberg, I. H., A. L. Coleman, and L. E. Rosenberg, 1965: Biochim. Biophys. Acta 102, 161.PubMedCrossRefGoogle Scholar
  34. Rosenberg, T., and W. Wilbrandt, 1963: J. Theoret. Biol, 5, 288.CrossRefGoogle Scholar
  35. Schachter, D., and J. S. Brillen, 1961: Fed. Proc. 20, 137.Google Scholar
  36. Schullz, S. G., and R. Zalusky, 1963: Biochim. Biophys. Acta 71, 503.CrossRefGoogle Scholar
  37. Schullz, S. G., and R. Zalusky, 1964: J. Gen. Physiol. 47, 567, 1043.CrossRefGoogle Scholar
  38. Varon, S., 1965: This symposium.Google Scholar
  39. Vidaver, G. A., 1964: Biochemistry 3, 795, 799 and 803.PubMedCrossRefGoogle Scholar
  40. Yunis, A. A., G. K. Arimura, and D. M. Kipnis, 1963: J. Lab. Clin. Med. 62, 465.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1967

Authors and Affiliations

  • Robert K. Crane
    • 1
  1. 1.Department of BiochemistryThe Chicago Medical SchoolChicagoUSA

Personalised recommendations