We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

The Enzymatic Basis for the Active Transport of Sodium and Potassium

  • Conference paper
  • 95 Accesses

Abstract

The main problem in relation to active transport of Na and K is how metabolic energy is translated into a movement of ions against an electrochemical gradient. The first step on the way to solving this problem was the demonstration that active transport is driven by ATP (Caldwell 1956, Caldwell and Keynes 1957, Dunham 1957, Witham 1958, Caldwed1, Hod gki n and Shaw 1959, Caldwell 1960, Caldwell, Hodgkin, Keynes and Shaw 1960, Hoffman 1960). A second step may be the isolation of the Na + K activated enzyme system (Skou 1957) and the demonstration that this enzyme system is (involved in the active transport of Na and K across the cell membrane (for references see Skou 1965 a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, K., and J. D. Judah, 1965: Identification of active phosphoprotein in a cation-activated adenosine triphosphatase. Biochilm, Biophys. Acta 104, 112.

    Article  CAS  Google Scholar 

  • Albers, R. W., S. Fahn, and G. F. Koval, 1963: The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase. Proc. Natl Acad. Sci. (U.S.A.) 50, 474.

    Article  CAS  Google Scholar 

  • Caldwell, P. C., 1956: The effect of certain metabolic inhibitors on the phosphate esters of the squid giant axon. J. Physiol. 132, 35 P.

    PubMed  CAS  Google Scholar 

  • Caldwell, P. C., 1960: The phosphoruis metabolism of squid axons and its relationship to the active transport of sodium. J. Physiol. 152, 545.

    PubMed  CAS  Google Scholar 

  • Caldwell, P. C., A. L. Hodgkin, R. D. Keynes, and T. J. Shaw, 1960: The effects of injecting energy-rich phosphate compounds on the active transport of ions in the giant axons of loligo. J. Physiol. 152, 561.

    PubMed  CAS  Google Scholar 

  • Caldwell, P. C., A. L. Hodgkin, and T. J. Shaw, 1959: Injection of compound containing energy-rich phosphate bond into giant nerve fibres. J. Physiol. 147, 18 P.

    Google Scholar 

  • Caldwell, P. C., and R. D. Keynes, 1957: The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. 137, 12 P.

    PubMed  CAS  Google Scholar 

  • Charnoch, I. S., and R. L. Post, 1963: Evidence of the mechanism of ouabain inhibition of cation activated adenosine triphosphatase. Nature 199, 910.

    Article  Google Scholar 

  • Dunham, E. T., 1957: Linkage of active cations transport to ATP utilization. Physiologist I, 23.

    Google Scholar 

  • Glynn, I. M., 1962: Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium. J. Physiol. 160, 18 P.

    Google Scholar 

  • Hoffman, J. F., 1960: The link between metabolism and the active transport of Na in human red cell ghosts. Federation Proc. 19, 127.

    Google Scholar 

  • Post, R. L., and P. C. Jolly, 1957: The linkage of sodium potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25, 119.

    Article  Google Scholar 

  • Post, R. L., A. K. Sen, and A. S. Rosenthal, 1965: A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. Biol. Chem. 240, 1437.

    PubMed  CAS  Google Scholar 

  • Rose, S. P. R., 1963: Phosphoprotein as an intermediate in cerebral microsomal adenosinetriphosphatase. Nature 199, 375.

    Article  PubMed  CAS  Google Scholar 

  • Sen, A. K., and R. L. Post, 1964: Stoichioinatry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem. 239, 345.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., 1957: The influence of some cations on the adenosine triphosphate from peripheral nervesi Biochim. Biophys. Acta 23, 394.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1960: Further investigations on a (Mg++ + Na+)-activated adenosinetriphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42, 6.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1963 : Studies on the Na + K activated ATP hydrolyzing enzyme system. The role of SH groups. Biochem. Biophys. Res. Commun. 10, 79.

    Article  PubMed  CAS  Google Scholar 

  • Skou, J. C., 1964: Enzymatic aspects of active linked transport of Na and K through the cell membrane. Progress Biophys. 14, 131.

    Article  CAS  Google Scholar 

  • Skou, J. C., 1965 a: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., 1965b: Relationshiip of ATP metabolism to ion transport Proc. XXIIIrd Int. Conjgr. Physiol. Sci. Tokyo, 578.

    Google Scholar 

  • Skou, J. C., and C. Hilberg, 1965: The effect of sulphydryl-blocking reagents and of urea on the (Na+ + K+) -activated enzyme system. Biochim. Biophys. Acta 110, 359.

    PubMed  CAS  Google Scholar 

  • Whittam, R., 1958: Potassium movements and ATP in human red cells. J. Physiol. 140, 479.

    PubMed  CAS  Google Scholar 

  • Whittam, R., 1962: The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84, 110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liana Bolis V. Capraro K. R. Porter J. D. Robertson

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag/Wien

About this paper

Cite this paper

Skou, J.C. (1967). The Enzymatic Basis for the Active Transport of Sodium and Potassium. In: Bolis, L., Capraro, V., Porter, K.R., Robertson, J.D. (eds) Symposium on Biophysics and Physiology of Biological Transport. Springer, Vienna. https://doi.org/10.1007/978-3-7091-5577-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-5577-6_61

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-5579-0

  • Online ISBN: 978-3-7091-5577-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics