Advertisement

Liquid Ion Exchange Membranes of Extreme Ionic Selectivity and High Transmissivity

  • K. Sollner
  • G. Shean
Conference paper

Abstract

Liquid, “oil,” membranes in electrolytic systems have been extensively studied, particularly their electromotive behaviour. Nernst and Riesenfeld [1] considered concentration cells, c1 A+L- | Membrane |c2 A+L-, in which the electrolyte concentrations within the membrane phase at the phase boundaries are c1 • k and c2 • k, where k is the distribution coefficient. The two phase boundary potentials are identical in magnitude and opposite in signs. Thus, the effective electromotive force of the cell is the diffusion potential c1 • k||c2 • k within the liquid membrane. The ionic selectivities of such membranes, the ratio of their transmissivities for the anions over that for cations or vice versa, are computed from the concentration potentials. The latter are ordinarily low because the mobilities of most ions differ only within a limited range; correspondingly, the ionic selectivities of such membranes are rather limited.

Keywords

Liquid Membrane Ionic Selectivity Permselective Membrane Strong Acid Cation Exchange Cation Selective Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nernst, W., and E. H. Riesenfeld, 1902: Ann. Phys. 8, 600.CrossRefGoogle Scholar
  2. [1]a
    Riesenfe1d, E. H., 1902: Ibid. 8, 609, 616.Ann. Phys.Google Scholar
  3. [2]
    Haber, F., 1908: Ann. Phys. 26, 927.CrossRefGoogle Scholar
  4. [2]a
    Haber, F., and Z. Klemensiewicz, 1909: Z. phys. Chem. 67, 385.Google Scholar
  5. [3]
    Beutner, R., 1933: Physical Chemistry of Living Tissues and Life Processes, Baltimore: Williams and Wilkins Company; in: Medical Physics (O. Gasser, Editor), 1944, p. 35–88, Chicago: Year Book Publishers.Google Scholar
  6. [4]
    Osterhout, W. J. V., 1940: Cold Spring Harbor Symposia on Quantitative Biology 8, 51.Google Scholar
  7. [4]a
    Shedlovsky, T., 1936: Cold Spring Harbor Symposia on Quantitative Biology 4, 27;Google Scholar
  8. [4]b
    Osterhout, W. J. V., 1940: J. Gen. Physiol. 26, 287.Google Scholar
  9. [5]
    Teorell, T., 1935: Proc. Nat. Acad. Sxi. (U.S.A.) 21, 152;CrossRefGoogle Scholar
  10. [5]a
    Teorell, T., 1953: Progr. Biophys. Chem. 3, 305;Google Scholar
  11. [5]b
    Teorell, T., 1956: Discussions Faraday Soc. 21, 9.Google Scholar
  12. [6]
    Meyer, K. H., and J.-F. Sievers, 1936: Helv. Chim. Acta 19, 649, 665, 987.CrossRefGoogle Scholar
  13. [7]
    Meyer, K. H., H. Hauptmann, and J.-F. Sievers, 1936: Helv. Chim. Acta 19, 946.Google Scholar
  14. [8]
    Bonhoeffer, K. F., M. Kahlweit, and H. Streh1ow, 1954: Z. phys. Chem. (N.F.) 1, 21.CrossRefGoogle Scholar
  15. [8]a
    Kahlweit, M., H. Strehlow, and C. S. Hocking, 1955: Ibid. 4, 212.Z. phys. Chem. (N.F.)CrossRefGoogle Scholar
  16. [9]
    Michaelis, L., 1922: Die Wasserstoffionen-Konzentration I, Berlin: Julius Springer.Google Scholar
  17. [10]
    Kahlweit, M., 1960: Pflügers Archiv 271, 139.CrossRefGoogle Scholar
  18. [11]
    Carr, C. W., H. P. Gregor, and K. Sollner, 1945: J. Gen. Physiol. 28, 179.PubMedCrossRefGoogle Scholar
  19. [11]a
    Gottlieb, M. H., R. Neihof, and K. Sollner, 1957: J. Phys. Chem. 61, 154.CrossRefGoogle Scholar
  20. [11]b
    Neihof, R., 1954: J. Phys. Chem. 58, 916.Google Scholar
  21. [12]
    Sollner, K., 1953: Ann. N. Y. Acad. Sci. 57, 177;PubMedCrossRefGoogle Scholar
  22. [12]a
    Sollner, K., 1955: SPIIn: Electrochemistry in Biology and Medicine (T. Shedlovsky, Editor), p. 33–64, New York: John Wiley and Sons, Inc.Google Scholar
  23. [12]b
    Neihof, R., and K. Sollner, 1955: J. Gen. Physiol. 38, 613;PubMedCrossRefGoogle Scholar
  24. [12]c
    Neihof, R., and K. Sollner, 1957: J. Phys. Chem. 61, 159.CrossRefGoogle Scholar
  25. [12]d
    Sollner, K., 1955: Arch. Biochem. and Biophys. 54, 129.Google Scholar
  26. [12]e
    Sollner, K., and R. Neihof, 1956: Arch. Biochem. and Biophys. 62, 507.CrossRefGoogle Scholar
  27. [12]f
    Carr, C. W., and K. Sollner, 1964: Biophys. J. 4, 189.PubMedCrossRefGoogle Scholar
  28. [13]
    Neihof, R., and K. Sollner, 1956: Discussions, Faraday Soc. 21, 108.CrossRefGoogle Scholar
  29. [14]
    Sollner, K., and G. Shean, 1964: J. Amer. Chem. Soc. 86, 1901.CrossRefGoogle Scholar
  30. [15]
    Rosano, H. L., F. Duby, and J. H. Schulman, 1961: J. Phys. Chem. 65, 1704.CrossRefGoogle Scholar
  31. [15]a
    Rosano, H. L., J. H. Schulman, and J. B. Weisbuch, 1961: Ann. N. Y. Acad. Sci. 92, 4570.CrossRefGoogle Scholar
  32. [16]
    Botrè, C., and G. Scibona, 1962: Annali di Chimica (Rome) 52, 1199.Google Scholar
  33. [17]
    Sollner, K., 1949: J. Phys. Colloid Chem. 53, 1211, 1226.Google Scholar
  34. [18]
    Shean, G., and K. Sollner, 1966: Ann. N. Y. Acad. Sci. 137, 759.PubMedCrossRefGoogle Scholar
  35. [19]
    Wilbrandt, W., and T. Rosenberg, 1961: Pharmacological Rev. 13, 109.Google Scholar

Copyright information

© Springer-Verlag/Wien 1967

Authors and Affiliations

  • K. Sollner
    • 1
  • G. Shean
    • 1
  1. 1.Laboratory of Physical Biology, National Institute of Arthritis and Metabolic DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations