Some Aspects of the Functional Polarity of Epithelia

  • V. Capraro
Conference paper


Functional polarity is a property inherent in all epithelial cells. This property seems to ibe related, in some cases, only to the physical and/or chemical structure of the membranes covering the two cellular poles without being affected by their metabolism. Lactic acid, water soluble, ionizing substance, accumulates in several epithelia and diffuses through the basal and luminal membranes into the surrounding media (W i 1 s o n 1954, Pfleger et al. 1958, Leaf 1959, Hogben 1962); the effluxes, however, are not the same on both sides, being higher through the basal than through the luminal membrane. A difference between the permeability constants of the two cellular membranes (Leaf 1959) seems to account for the observed ratio between the serosal and mucosal lactic acid fluxes.


Lactic Acid Luminal Membrane Intracellular Sodium Extrusion Rate Functional Polarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, B., and H. H. Ussing, 1957: Acta Physiol. Scand. 39, 228.PubMedCrossRefGoogle Scholar
  2. Capraro, Y.E. Milla, and A. Bianchi, 1963: Nature 199, 1099.PubMedCrossRefGoogle Scholar
  3. Capraro, Y.E. Milla, A. Bianchi, and C. Lippe, 1963: Experientia 19, 347.PubMedCrossRefGoogle Scholar
  4. Cohen, L. L., and K. C. Huang, 1964: Amer. J. Physiol. 206, 647.PubMedGoogle Scholar
  5. Crane, R. K., 1962: Fed. Proc. 21, 891.PubMedGoogle Scholar
  6. Cremaschi, D., C. Lippe, and V. Capraro, 1965: Boll. Soc. It. Biol. Sper. 41, 171.Google Scholar
  7. Csaky, T. Z., and M. Thale, 1960: J. Physiol. 151, 59.PubMedGoogle Scholar
  8. Csaky, T. Z., 1961: Amer. J. Physiol. 201, 999.PubMedGoogle Scholar
  9. Curran, P. F., F. C. Herrera, and W. J. Flanigan, 1963: J. Gen. Physiol. 46, 1011.PubMedCrossRefGoogle Scholar
  10. Esposito, G., A. Facili, and V. Capraro, 1964: Experientia 20, 122.PubMedCrossRefGoogle Scholar
  11. Finch, L. R., and J. R. Hird, 1960: Biochim. Biophys. Acta 43, 278.PubMedCrossRefGoogle Scholar
  12. Fisher, R. B., and D. S. Parsons, 1953: J. Physiol. 119, 210.PubMedGoogle Scholar
  13. Frazier, H. S., E. F. Dempsey, and A. Leaf, 1962: J. Gen. Physiol. 45, 529.PubMedCrossRefGoogle Scholar
  14. Gilles-Baillien, M., and E. Schoffeniels, 1965: Arch. Int. Physiol. 73, 355.PubMedCrossRefGoogle Scholar
  15. Hakim, A. A., and N. Lifson, 1964: Amer. J. Physiol. 206, 1315.PubMedGoogle Scholar
  16. Harrison, H.E., and H. C. Harrison, 1963: Amer. J. Physiol. 205, 107.PubMedGoogle Scholar
  17. Hogben, C. A. M., 1962: Circulation 24, 1179.Google Scholar
  18. Jervis, E. L., and D. H. Smyth, 1959: J. Physiol. 149, 433.PubMedGoogle Scholar
  19. Leaf, A., 1959: J. Cell. Comp. Physiol. 54, 103.PubMedCrossRefGoogle Scholar
  20. Leaf, A., and R. M. Hays, 1962: J. Gen. Physiol. 45, 221.CrossRefGoogle Scholar
  21. Lippe, C., A. Bianchi, D. Cremaschi, and V. Capraro, 1965: Arch. Int. Physiol. 73, 43.PubMedCrossRefGoogle Scholar
  22. Pfleger, K., H. Jacobi, and W. Rummel, 1958: Naumyn-Schmiedebergs Arch. Exper. Path. u. Pharmak. 234, 400.Google Scholar
  23. Samiy, A. H., and R. P. Spencer, 1961: Amer. J. Physiol. 200, 505.PubMedGoogle Scholar
  24. Schullz, S. G., and R. Zalusky, 1964: J. Gen. Physiol. 47, 1043.CrossRefGoogle Scholar
  25. Wilson, T. H., 1954: Biochem. J. 56, 521.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1967

Authors and Affiliations

  • V. Capraro
    • 1
  1. 1.Institute of General PhysiologyMilanItaly

Personalised recommendations