The Behavior of Centrioles and the Structure and Formation of the Achromatic Figure

  • Hans A. Went
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 6 / G / 1)


Included among the many preparations for cell division in most higher plants and animals is the constellation of events encompassing the formation of the spindle or mitotic apparatus, depending upon the organism. These are transient structures, responsible primarily for the equipartition of the hereditary material, which are elaborated by cells just in advance of division and disappear from view shortly after (and sometimes before) the completion of division. Precisely what the origin and fate of the structural molecules of the division figure may be is apparently not known. In contrast to the dearth of factual information in this regard, an extensive literature describing the microscopically visible aspects of mitotic apparatus build-up and break-down exists. Recently investigations of a more chemical nature inquiring into the chemical events associated with mitotic apparatus appearance and disappearance have been reported. Whatever the underlying scheme may be, it seems likely that the formation of the division figure involves complex interactions between structural moieties that can be detected by light and electron microscopy, their structural precursors and functional molecules.


Basal Body Meiotic Division Spindle Pole Spindle Fiber Mitotic Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amano, S., 1957: The structure of the centriole and spindle body as observed under the electron microscope and phase contrast microscopes. A new extension fiber theory concerning mitotic mechanisms in animal cells. Cytologia 22, 193–212.CrossRefGoogle Scholar
  2. Ambrose, E. J., and A. Bajer, 1960: The analysis of mitoses in single living cells by interference microscopy. Proc. Roy. Soc. (Land.) B. 153, 357–366.CrossRefGoogle Scholar
  3. Amoore, J. E., 1963: Non identical mechanisms of mitotic arrest by respiratory inhibitors in pea root tips and sea urchin eggs. J. Cell Biol. 18, 555–567. Protoplasmatologia VI/G 1PubMedCrossRefGoogle Scholar
  4. Bajer, A., 1958: Cine-micrographic studies on chromosome movements in beta-irradiated cells. Chromosoma (Berlin) 9, 319–331.CrossRefGoogle Scholar
  5. —1961: A note on the behavior of spindle fibers at mitosis. Chromosoma (Berlin) 12, 64–71.CrossRefGoogle Scholar
  6. Bal, A. K., and P. R. Gross, 1964: Suppression of mitosis and macromolecular synthesis in onion roots by heavy water. J. Cell Biol. 23, 188–192.PubMedCrossRefGoogle Scholar
  7. Barthelmess, A., 1957: Chemisch induzierte multipolare Mitosen. Protoplasma 48, 546–561.CrossRefGoogle Scholar
  8. Bauer, H., R. Dietz, und C. Röbbelen, 1961: Die Spermatocytenteilungen der Tipuliden. III. Das Bewegungsverhalten der Chromosomen in Translokationsheterozygoten von Tipula oleracea. Chromosoma (Berlin) 12, 116–189.CrossRefGoogle Scholar
  9. Beams, H. W., T. C. Evans, V. van Breeman, and W. W. Baker, 1950: Electron microscopic studies on the structure of the mitotic figure. Proc. Soc. Exper. Biol, and Med. 74, 717–720.Google Scholar
  10. Bălař, K., 1927: Beiträge zur Kenntnis des Mechanismus der indirekten Kernteilung. Naturwissenschaften 15, 725–734.CrossRefGoogle Scholar
  11. —1929 a: Beiträge zur Kausalanalyse der Mitose. II. Untersuchungen an den Spermatocyten von Chorthippus (Stenobothrus) lineatus Panz. Arch. Entwicklungsmechanik d. Org. 118, 359–484.CrossRefGoogle Scholar
  12. —1929 b: Beiträge zur Kausalanalyse der Mitose. III. Untersuchungen an den Staubfadenhaaren von Tradescantia virginica. Z. Zellforsch. 10, 73–134.CrossRefGoogle Scholar
  13. Bergen, P., 1960: On the blocking of mitosis by heat shock applied at different mitotic stages in the cleavage divisions of Trichogaster trichopterus var. sumatranus (Teleostei: Anabantidae). Nytt Mag. for Zool. 9, 37–121.Google Scholar
  14. Bernhard, W., et E. de Harven, 1960: L’ultrastructure du centriole et d’autres éléments de l’appareil achromatique. Proc. 4th Intern. Conf. Electron Microscopy, 1958, (W. Bargmann, et al, eds.), Biologisch-Medizinischer Teil. Berlin: Springer-Verlag, vol. 2, 217–227.Google Scholar
  15. Bessis, M., et J. Breton-Gorius, 1957 a: Étude au microscope électronique des granulations ferrugineuses des érythrocytes normaux et pathologiques. Rev. Hématol. 12, 43–63.PubMedGoogle Scholar
  16. — — 1957 b: Le centriole des cellules du sang. Étude à l’état vivant et au microscope électronique, Bull. de Microsc. Appliquée 7, 54–56.Google Scholar
  17. — — 1958: Sur une structure inframicroscopique péricentriolaire. Étude au microscope électronique sur les leucocytes de mammifères. C. R. Acad. Sci. (Paris) 246, 1289–1291.Google Scholar
  18. — —et J. P. Thiery, 1958: Centriole, corps de Golgi et aster des leucocytes. Étude au microscope électronique. Rev. Hématol. 13, 363–386.PubMedGoogle Scholar
  19. Bloom, W., R. E. Zirkle, and R. B. Uretz, 1955: Irradiation of parts of individual cells. III. Effects of chromosomal and extra-chromosomal irradiation on chromosome movements, Ann. N. Y. Acad. Sci. 59, 503–513.PubMedCrossRefGoogle Scholar
  20. Blum, H. F., and J. P. Price, 1950: Delay of cleavage in the Arbacia egg by U. V. radiation. J. Gen. Physiol, 33, 285–304.PubMedCrossRefGoogle Scholar
  21. Bonnevie, K., 1947: On the mechanics of mitosis. J. Morph. 81, 399–423.PubMedCrossRefGoogle Scholar
  22. Boss, J., 1955: Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exper. Cell Res. 8, 181–187.CrossRefGoogle Scholar
  23. Boveri, Th., 1888: Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Zellen-Studien 2, Jena: Gustav Fischer.Google Scholar
  24. —1890: Über das Verhalten der chromatischen Kernsubstanz bei der Bildung der Richtungskörper und bei der Befruchtung. Zellen-Studien 3, Jena: Gustav Fischer.Google Scholar
  25. —1895: Über die Befruchtungs- und Entwicklungsfähigkeit kernloser Seeigel-Eier. Roux’ Arch. Entwicklungsmech. (Berlin) 2. (Cited in Wilson 1928.)Google Scholar
  26. —1896: S. B. phys. Med. Ges. Würzburg 9, 133. (Cited in Dirksen 1961 a.)Google Scholar
  27. —1900: Über die Natur der Centrosomen. Zellen-Studien 4. Jena: Gustav Fischer.Google Scholar
  28. Brachet, J., 1957: Biochemical Cytology. New York: Academic Press. xi/516.Google Scholar
  29. Brauer, A., 1893: Zur Kenntnis des Spermatogenese von Ascaris megalocephala. Arch. mikr. Anat. 42. (Cited in Hertwig 1906, p. 196; Wilson 1928, p. 675.)Google Scholar
  30. Briggs, R., and T. J. King, 1959: Nucleocytoplasmic interactions in eggs and embryos. Chapter 13 in: The Cell, vol. 1 (Brachet and Mirsky, eds.). New York: Academic Press. 537–617.Google Scholar
  31. Bucher, N. L. R., and D. Mazia, 1960: DNA synthesis in relation to duplication of centers in dividing eggs of the sea urchin, Strongylocentrotus purpuratus. J. Biophys. Biochem. Cytol. 7, 651–655.PubMedCrossRefGoogle Scholar
  32. Bucher, O. 1959: Die Amitose der tierischen und menschlichen Zelle. Protoplasmatologia 6, 1–159.Google Scholar
  33. Buck, R. C., 1961: Lamellae in the spindle of mitotic cells of Walker 256 Carcinoma. J. Biophys. Biochem. Cytol. 11, 227–236.PubMedCrossRefGoogle Scholar
  34. Burgos, M. H., and D. W. Fawcett, 1955: Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felix domestica). J. Biophys. Biochem. Cytol. 1, 287–300.PubMedCrossRefGoogle Scholar
  35. —1956: An electron microscope study of spermatid differentiation in the toad, Bufo arenarum hensel. J. Biophys. Biochem. Cytol. 2, 223–240.PubMedCrossRefGoogle Scholar
  36. Carasso, N., 1958: Ultra-structure des cellules visuelles de larves d’amphibiens. Compt. rend. Sci. (Paris) 247, 527–531.Google Scholar
  37. —and P. Favard, 1961: Les Ultrastructure Cytoplasmiques. 910–1117 in: Traité de microscopie électronique, vol. II, (C. Magnan, ed.) Paris: Hermann.Google Scholar
  38. Carlson, J. G., 1940: Immediate effects of 250R of X-rays on the different stages of mitosis in neuroblasts of the grasshopper, Choriophaga viridifasciata. J. Morphol. 66, 11–23.CrossRefGoogle Scholar
  39. Carlson, J. G. —1952: Microdissection studies of the dividing neuroblast of the grasshopper Chortophaga viridifasciata (De Geer). Chromosoma (Berlin) 5, 199–220.CrossRefGoogle Scholar
  40. Carlson, J. G.1954: Immediate effects on division, morphology and viability of the cell. In: Radiation Biology, vol. 1, part 2 (A. Hollaender, ed.). New York: McGraw-Hill, 763–824.Google Scholar
  41. Child, F. M., and D. Mazia, 1956: A method for the isolation of the parts of ciliates. Exper. 12, 161–162.CrossRefGoogle Scholar
  42. Clark, T. B., and F. G. Wallace, 1960: A comparative study of kinetoplast ultra-structure in the Tryposomatidae. J. Protozool. 7, 115–124.Google Scholar
  43. Cleveland, L. R., 1956: Brief accounts of the sexual cycles of the flagellates of Cryptocercus. J. Protozool. 3, 161–180.Google Scholar
  44. Cleveland, L. R.—1957 a: Types and life cycles of centrioles of flagellates. J. Protozool. 4, 230–241.Google Scholar
  45. Cleveland, L. R.1957 b: Achromatic figure formation by multiple centrioles of Barbulanympha. J. Protozool. 4, 241–248.Google Scholar
  46. Cleveland, L. R.—1958: A factual analysis of chromosomal movement in Barbulanympha. J. Protozool. 5, 47–62.Google Scholar
  47. Cleveland, L. R.—1960 a: The centrioles of Tridionympha from termites and their functions in reproduction. J. Protozool. 7, 326–341.Google Scholar
  48. Cleveland, L. R.—1960 b: Photographs of living centrioles in resting cells of Tridionympha collaris. Arch. Protistenk. 105, 110–112.Google Scholar
  49. —1961: The centrioles of Trichomonas and their functions in cell reproduction. Arch. Protistenk. 105, 149–162.Google Scholar
  50. —1962: Photographs of gametogenesis in living cells of Tridionympha. Arch. Protistenk. 105, 497–508.Google Scholar
  51. Coe, W. R., 1899: The maturation and fertilization of the egg of Cerebratulus. Zool. Jahrb. 12, 425–470.Google Scholar
  52. Conklin, E. G., 1902: Karyokinesis and cytokinesis in the maturation, fertilization and cleavage of Crepidula and other Gasteropoda. J. Acad. Nat. Sci, Philadelphia, 2nd Ser. 12, 1–121.Google Scholar
  53. —1904: Experiments on the origin of the cleavage centrosomes. Biol. Bull. 7, 221–226.CrossRefGoogle Scholar
  54. —1905: Organization and cell lineage of the ascidian egg. J. Acad. Nat. Sci., Philadelphia 13, 1–119.Google Scholar
  55. Cornman, I., 1944: A summary of evidence in favor of the traction fiber in mitosis. Amer. Nat. 78, 410–422.CrossRefGoogle Scholar
  56. Costello, D. P., 1960: 183. The “polar suns” (centrospheres) of the egg of Polychoerus (Turbellaria, Acoela). Anat. Rec. 137, 346.Google Scholar
  57. —1961 a: On the orientation of centrioles in dividing cells and its significance: a new contribution to spindle mechanics. Biol. Bull. 120, 285–312.CrossRefGoogle Scholar
  58. —1961 b: The orientation of centrioles in dividing cells and its significance. Biol. Bull. 121, 368.Google Scholar
  59. Darlington, C. D., 1932: Recent Advances in Cytology. Philadelphia: P. Blakiston’sGoogle Scholar
  60. Son and Co., Inc. xviii/559.Google Scholar
  61. de Harven, E., and P. Dustin, Jr., 1960: Étude au microscope électronique de la stathmocinèse chez le rat. In: Les Actions antimitotiques et caryoclastiques des substances chimiques (J. Turchini. and P. Sentein, eds.) 189–198. Colloque No. 88, C. N. R. S., Paris.Google Scholar
  62. Delamater, E. D., 1951: A new cytological basis for bacterial genetics. Cold Spr. Harb. Symp. Quant. Biol. 16, 381–409.CrossRefGoogle Scholar
  63. de Robertis, E., 1960: Some observations on the ultrastructure and morphogenesis of photoreceptors. J. Gen. Physiol. 43, (Suppl. 2), 1–14.CrossRefGoogle Scholar
  64. Dietz, R., 1958: Multiple Geschlechts Chromosomen bei den cypriden Ostracoden, ihre Evolution und ihr Teilungsverhalten, Chromosoma (Berlin) 9, 359–440.CrossRefGoogle Scholar
  65. —1959: Centrosomenfreie Spindelpole in Tipuliden-Spermatocyten, Z. Naturforsch. 14 b, 749–752.Google Scholar
  66. —1962: Polarisationsmikroskopische Befunde zur chromosomeninduzierten Spindel bildung bei der Tipulide Pales crocata (Nematocera). Verh. Dtsch. Zool. Ges. Wien 1962. 131–138.Google Scholar
  67. Dirksen, E. R., 1961 a: Studies on cytaster formation in artificially activated sea urchin eggs. Thesis (Ph. D. in Zoology), Univ. of Calif. ii, 152.Google Scholar
  68. —1961b: The presence of centrioles in artificially activated sea urchin eggs. J. Biophys. Biochem. Cytol. 11, 244–247.PubMedCrossRefGoogle Scholar
  69. —1964: The isolation and characterization of asters from artificially activated sea urchin eggs. Exper. Cell Res., 36, 256–269.CrossRefGoogle Scholar
  70. Doflein, F., and E. Reichenow, 1927–1929: Lehrbuch der Protozoenkunde. 5. Aufl. Jena: Gustav Fischer. viii, 1–1262.Google Scholar
  71. Doyle, G. G., 1956: A comparative morphological and cytogenetic study of mono-ploid and autodiploid Oenothera hookeri, Thesis (Master of Science in Botany). Washington State University. vi, 29.Google Scholar
  72. Eigsti, O. J., and P. Dustin, Jr., 1955: Colchicine — in Agriculture, Medicine, Biology and Chemistry. Ames: Iowa State College Press. xiii, 470.Google Scholar
  73. Epel, D., 1963: The effects of carbon monoxide inhibition on ATP level and rates of mitosis in the sea urchin egg. J. Cell Biol. 17, 315–319.PubMedCrossRefGoogle Scholar
  74. Errera, M., and M. Brunfant, 1964: Observations of mitotic figures in pulse labelled HeLa cells. Exper. Cell Res. 33, 105–111.CrossRefGoogle Scholar
  75. Fankhauser, G., 1932: Cytological studies on egg fragments of the salamander Triton. II. The history of the supernumerary sperm nuclei in normal fertilization and cleavage of fragments containing the egg nucleus. J. Exper. Zool. 62, 185–235.CrossRefGoogle Scholar
  76. —1948: The organization of the amphibian egg during fertilization and cleavage. Ann. N. Y. Acad. Sci. 49, 684–708.PubMedCrossRefGoogle Scholar
  77. Fawcett, D. W., 1958: The structure of the mammalian spermatozoon. Int. Rev. Cytol. 7, 195–234.CrossRefGoogle Scholar
  78. Fawcett, D. W.,—1961: Cilia and flagella, in: The Cell (J. Brachet, and A. E. Mirsky, eds.), vol. 2, 217–298.Google Scholar
  79. Fetner, R. H., and E. D. Porter, 1965: Multipolar mitosis in the KB (Eagle) human cell line and its increased frequency as a function of 250KV X-irradiation. Exper. Cell Res. 37, 429–439.CrossRefGoogle Scholar
  80. Fischer, A., 1899: Fixierung, Färbung und Bau des Protoplasmas. Jena: Gustav Fischer. x, 362.Google Scholar
  81. Fol, H., 1891: Die „Centrenquadrille“, eine neue Episode aus der Befruchtungsgeschichte. Arch. Sci. Phys. et Nat. 25, 393–420. (Cited in Dirksen 1961 a.)Google Scholar
  82. Fry, H. J., 1929: The so-called central bodies in fertilized Echinarachnius eggs. I. The relationship between central bodies and astral structure as modified by various mitotic phases. Biol, Bull. 56, 101–128.CrossRefGoogle Scholar
  83. —1932: Studies of the mitotic figure. I. Chaetopterus: Central body structure at metaphase, first cleavage, after picro–acetic fixation. Biol. Bull. 63, 149–186.CrossRefGoogle Scholar
  84. Gall, J. G., 1961: Centriole replication. A study of spermatogenesis in the snail Viviparus. J. Biophys. Biochem. Cytol. 10, 163–193.PubMedCrossRefGoogle Scholar
  85. Galtsoff, P. S., and D. E. Philpott, 1960: Ultrastructure of the spermatozoan of the oyster, Crassostrea virginica. J. Ultrastructure Res. 3, 241–253.CrossRefGoogle Scholar
  86. Gatenby, J. B., 1959: Electron microscopy of spermatogenesis of Lumbricus. Trans. Roy. Soc. N. Z. 1, 55.Google Scholar
  87. —1961: The electron microscopy of centriole flagellum and cilium. J. Roy. Micr. Soc. 79, 299–317.PubMedCrossRefGoogle Scholar
  88. Gaulden, M. E., and J. G. Carlson, 1951: Cytological effects of colchicine on the grasshopper neuroblast in vitro with special reference to the origin of the spindle. Exper. Cell Res. 2, 416–433.CrossRefGoogle Scholar
  89. Geitler, L., 1934: Grundriß der Cvtologie. Berlin: Verlag von Gebrüder Borntraeger. viii, 1–295.Google Scholar
  90. Geyer–Duszynska I., 1961: Spindle disappearance and chromosome behavior after partial–embryo irradiation in Cecidomyiida (Diptera). Chromosoma (Berlin) 12. 233–247.CrossRefGoogle Scholar
  91. Gibbons, I. R., 1961: Structural asymmetry in cilia and flagella. Nature (London) 190, 1128–1129.CrossRefGoogle Scholar
  92. — and A. V. Grimstone, 1960: On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytol. 7, 697–716.PubMedCrossRefGoogle Scholar
  93. Giese, A., 1949: Activation of eggs, fertilization and early development as affected by ultraviolet rays. Amer. Nat. 83, 165–178.CrossRefGoogle Scholar
  94. Grasso, J. A., H. Swift, and G. A. Ackerman, 1962: Obvervations on the development of erythrocytes in mammalian fetal liver. J. Cell Biol. 14, 235–254.PubMedCrossRefGoogle Scholar
  95. Griffin, B. B., 1896: The history of the archoplasmic structures in the maturation and fertilization of Thalassema. Trans. N. Y. Acad. Sci. 2, 163–176.Google Scholar
  96. Grimstone, A. V., 1961: Fine structure and morphogenesis in Protozoa. Biol. Rev. 36, 97–150.PubMedCrossRefGoogle Scholar
  97. Gross, P. R., and G. H. Cousineau, 1963: Synthesis of spindle–associated proteins in early cleavage. J. Cell Biol. 19, 260–265.PubMedCrossRefGoogle Scholar
  98. L. I. Malkin, and W. A. Moyer, 1964: Templates for the first proteins of embryonic development. Proc. Nat. Acad. Sci. (Wash.) 51, 407–414.CrossRefGoogle Scholar
  99. D. E. Philpott, and S. Nass. 1958: The fine structure of the mitotic spindle in sea urchin eggs. J. Ultrastructure Res. 2, 55–72.CrossRefGoogle Scholar
  100. — and W. Spindel, 1960 a: Heavy water inhibition of cell division: an approach to mechanism. Ann. N. Y. Acad. Sci. 90, 500–522.PubMedCrossRefGoogle Scholar
  101. Gross, P. R., and W. Spindel,— —1960 b: Mitotic arrest by deuterium oxide. Science 131, 37–39.PubMedCrossRefGoogle Scholar
  102. Harris, P. J., 1962 a: The fine structure of the mitotic apparatus in dividing sea urchin blastomeres. Thesis (Ph. D. in Zoology), Univ. of California. iii, 95.Google Scholar
  103. Harris, P. J., — 1962 b: Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J. Cell Biol. 14, 475–487.PubMedCrossRefGoogle Scholar
  104. Harvey, E. B., 1936: Parthenogenetic merogony or cleavage without nuclei in Arbacia punctulata. Biol. Bull. 71, 101–121.CrossRefGoogle Scholar
  105. Harris, P. J., — 1940: A comparison of the development of nucleate and non-nucleate eggs of Arbacia punctulata. Biol. Bull. 79, 166–187.CrossRefGoogle Scholar
  106. Hashimoto, T., S. F. Conti and H. B. Naylor, 1959: Studies of the fine structure of microorganisms. IV. Observations on budding Saccharomyces cerevisiae by light and electron microscopy, J. Bacteriol. 77, 344–354.PubMedGoogle Scholar
  107. Hay, E., 1962: Cytological studies of dedifferentiation and differentiation in regenerating amphibia limbs, in: Regeneration (D. Rudnick, ed.), New York: Ronald Press Co. v, 1–272.Google Scholar
  108. Heidenhain, M., 1907: Plasma und Zelle, vol. I. Jena: Gustav Fischer. viii, 1–506.Google Scholar
  109. Henneguy, L. F., 1891: Nouvelles recherches sur la division cellulaire indirecte. J. de l’Anat. 27. (Cited in Hertwig 1906, 219.)Google Scholar
  110. Henneguy, L. F., — Henneguy, L. F., 1897: Sur les rapports des cils vibratiles avec les centrosomes. Arch. d’Anat. Microsc. 1, 481–496.Google Scholar
  111. Henshaw, P. S., 1940 a: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. I. Delay in cell division caused by exposure of sperm to roentgen rays, Am. J. Roentgenol. Radium Therapy 43, 899–906.Google Scholar
  112. Henshaw, P. S., —1940 b: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. II. Modification of the mitotic time schedule in the eggs by exposure of the gametes to roentgen rays, Amer. J. Roentgenol. Radium Therapy 43, 907–912.Google Scholar
  113. Henshaw, P. S., —1940 c: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. III. Fixation of irradiation effect by fertilization in eggs. Amer. J. Roentgenol. Radium Therapy 43, 913–916.Google Scholar
  114. Henshaw, P. S. —1940 d: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. V. The influence of low temperature on recovery from roentgen–ray effects in the eggs. Amer J. Roentgenol. Radium Therapy 43, 921–922.Google Scholar
  115. Henshaw, P. S. — 1940 e: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. VI. Production of multipolar cleavage in the eggs by exposure of the gametes to roentgen rays. Amer. J. Roentgenol. Radium Therapy 43, 923–933.Google Scholar
  116. and I. Cohen, 1940: Further studies on the action of roentgen rays on the gametes of Arbacia punctulata. IV. Canges in radiosensitivity during the first cleavage cycle. Amer. J. Roentgenol. Radium Therapy 43, 917–920.Google Scholar
  117. Hertwig, O., 1893: Die Zelle und die Gewebe. Jena: Gustav Fischer. xi, 1–296.Google Scholar
  118. Hertwig, O., — Hertwig, O., 1906: Allgemeine Biologie. Jena: Gustav Fischer. xvi, 1–649Google Scholar
  119. Hoffmann-Berling, H., 1954 a: Adenosintriphosphat als Beitreibsstoff von Zellbewegungen. Biochim. Biophys. Acta 14, 182–194.Google Scholar
  120. Hertwig, O., — 1954 b: Die Bedeutung des Adenosintriphosphat für die Zell- und Kernteilungsbewegungen in der Anaphase. Biochim. Biophys. Acta 15, 226–236.CrossRefGoogle Scholar
  121. Holtzer, H., J. Abbott, and M. W. Cavanaugh, 1959: Some properties of embryonic and cardiac myoblasts. Exper. Cell Res. 16, 595–601.CrossRefGoogle Scholar
  122. Huettner, A. F., 1933: Continuity of the centrioles in Drosophila melanogaster. Z. Zellforsch. 19, 119–134.CrossRefGoogle Scholar
  123. Hughes, A., 1952: The mitotic cycle: The cytoplasm and nucleus during interphase and mitosis. New York: Academic Press, Inc. viii, 1–232.Google Scholar
  124. Hultin, T., 1961 a: The effect of puromycin on protein metabolism and cell division in fertilized sea urchin eggs. Exper. 17, 410–411.CrossRefGoogle Scholar
  125. Hultin, T. — 1961 b: Activation of ribosomes in sea urchin eggs in response to fertilization. Exper. Cell Res. 25, 405–417.CrossRefGoogle Scholar
  126. Hultin, T. — 1964: Factors influencing polyribosome formation in vivo. Exper. Cell Res. 34, 608–611.CrossRefGoogle Scholar
  127. Hultin, T. — Immers, J., 1957: Cytochemical studies of fertilization and first mitosis of the sea urchin egg. Exper. Cell Res. 12, 145–153.CrossRefGoogle Scholar
  128. Inoué, S., 1959: Motility of cilia and the mechanism of mitosis. Rev. Mod. Phys. 31, 402–408.CrossRefGoogle Scholar
  129. Inoué, S., — 1960: On the physical properties of the mitotic spindle. Ann. N. Y. Acad. Sci. 90, 529–530.PubMedCrossRefGoogle Scholar
  130. Inoué, S., — 1964: Organization and function of the mitotic spindle, in: Primitive Motile Systems in Cell Biology, New York: Academic Press Inc., 549–598.Google Scholar
  131. Inoué, S., — and A. Bajer, 1961: Birefringence in endosperm mitosis. Chromosoma (Berlin) 12, 48–63.CrossRefGoogle Scholar
  132. Ito, S., 1960: The lamellar systems of cytoplasmic membranes in dividing spermatogenic cells of Drosophila virilis. J. Biophys. Biochem. Cytol. 7, 433–442.PubMedCrossRefGoogle Scholar
  133. Izutsu, K., 1959: Irradiation of parts of single mitotic apparatus in grasshopper spermatocytes with an ultraviolet–microbeam. Mie Medical Journ. 9, 15–29.Google Scholar
  134. Izutsu, K., — 1961 a: Effects of U. V. microbeam irradiation upon division in grasshopper spermatocytes. I. Results of irradiation during prophase and prometaphase. Mie Medical Journ. 11, 199–212.Google Scholar
  135. Izutsu, K., — 1961 b: Effects of U. V. microbeam irradiation upon division in grasshopper spermatocytes. II. Results of irradiation during metaphase and anaphase. Mie Medical Journ. 11, 213–232.Google Scholar
  136. Johnson, H. H., 1931: Centrioles and other cytoplasmic components of the male sperm cells of the Gryllidae. Z. wiss. Zool. 140, 115–166.Google Scholar
  137. Kane, R. E., 1962: The mitotic apparatus: isolation by controlled pH. J. Cell Biol. 12,Google Scholar
  138. Kawamura, K., 1955: The course of spindle formation in the spermatocyte of the grasshopper, Acrydium japonicus, observed by phase microscopy. Cytologia (Tokyo) 20, 47–51.Google Scholar
  139. Kawamura, K., — 1960: Studies on cytokinesis in neuroblasts of the grasshopper, Chortophaga viridifasciata (De Geer). II. The role of the mitotic apparatus in cytokinesis. Exper. Cell Res. 21, 9–18.CrossRefGoogle Scholar
  140. Kawamura, N., 1960: Cytochemical and quantitative study of proteinbound sulf–hydryl and disulfide groups in eggs of Arbacia during the first cleavage. Exper. Cell Res. 20, 127–138.CrossRefGoogle Scholar
  141. Kawamura, N., —and K. Dan, 1958: A cytochemical study of the sulfhydryl groups of sea urchin eggs during the first cleavage. J. Biophys. Biochem. Cytol. 4, 615–620.PubMedCrossRefGoogle Scholar
  142. Kelly, D. E., 1962: Pineal organs: photoreception, secretion and development. Amer. Sci. 50, 597–625.Google Scholar
  143. Kerr, N. S., 1960: Flagella formation by myxamoebae of the true slime mold, Didymium nigripes. J. Protozool. 7, 103–108.Google Scholar
  144. King, H. D., 1901: The maturation and fertilization of the egg of Bufo lentiginosus. J. Morph. 17, 293–350.CrossRefGoogle Scholar
  145. Kupka, E., und F. Seelich, 1948: Die anaphasische Chromosomenbewegung. Ein Beitrag zur Theorie der Mitose. Chromosoma (Berlin) 3, 302–327.CrossRefGoogle Scholar
  146. Kurosumi, K., 1957: Electron microscope studies on mitosis in sea–urchin blastomeres. Protoplasma 49, 116–139.CrossRefGoogle Scholar
  147. Kurosumi, K., M. Yamagishi, and T. Nagakawa, 1958: Electron microscopic and cytochemical studies on the cytoplasmic RNA in sea-urchin eggs. Okajimas Fol. Anat. Japon. 30, 369–387.Google Scholar
  148. Lenhossek, M., 1898: Über Flimmerzellen. Verh. dtsch. anat Ges., Jena: Gustav Fischer, 12, 106–128.Google Scholar
  149. Lepper, R., Jr., 1956: The plant centrosome and the centrosome-blepharoplast homology. Bot. Rev. 22, 375–417.CrossRefGoogle Scholar
  150. Lettré, H., und R. Lettré, 1957: Persistenz der Chromosomenspindelfaser, eine Arbeitshypothese zur Deutung der karyokinetischen Vorgänge. Naturwiss. 44, 406.CrossRefGoogle Scholar
  151. — —1958: Un problème cytologique: La persistance des structures du fuseau dans l’intervalle des mitoses. Rev. Hémat. 13, 337–362.PubMedGoogle Scholar
  152. — —1959: A cytological problem: permanence of the chromosomal spindle fiber during interphase. Nucleus (Calcutta) 2, 23–44.Google Scholar
  153. Lewis, A. G., and G. Marin, 1963: Induction of multipolar spindles by X-radiation in mammalian cells in vitro. Exper. Cell Res. 31, 448–451.CrossRefGoogle Scholar
  154. Lewis, M. R., 1933: Reversible changes in the nature of the mitotic spindle brought in living cells by means of heat. Arch. exper. Zellforsch. 14, 464–470.Google Scholar
  155. Lillie, F. R., 1897: On the origin of the centres of the first cleavage-spindle in Unio complanata. Sci. N. S. 5, 389–390.Google Scholar
  156. Lima-de-Faria, A., 1956: The role of the kinetochore in chromosome organization. Hereditas (Lund) 42, 85–160.CrossRefGoogle Scholar
  157. — —1958: Recent advances in the study of the kinetochore. Int. Rev. Cytol. 7, 123–158.CrossRefGoogle Scholar
  158. Lindegren, C. C., M. A. Williams, and D. O. McClary, 1956: The distribution of chromatin in budding yeast cells. Antonie van Leeuwenhoek 22, 1–20.PubMedCrossRefGoogle Scholar
  159. Loeb, J., 1892: Investigations in physiological morphology. J. Morph. 7, 253–262.CrossRefGoogle Scholar
  160. Longwell, A., and M. Mota, 1960: The distribution of cellular matter during meiosis. Endeavour 19, 100–107.CrossRefGoogle Scholar
  161. Lorch, I. J., 1952: Enucleation of sea-urchin blastomeres with or without removal of asters. Quart. J. Microsc. Sci. 93, 475–486.Google Scholar
  162. Lwoff, A., 1949: Kinetosomes and the development of ciliates. Growth. Symposium 9, 61–91.Google Scholar
  163. — —1950: Problems in the morphogenesis of ciliates. New York: John Wiley and Sons, Inc. ix, 1–103.Google Scholar
  164. McClendon, J. F., 1908: The segmentation of eggs of Asterias farbesii deprived of chromatin. Roux’ Arch. Entwicklungsmechanik (Berlin) 26, 662–668.Google Scholar
  165. Maggio, R., and C. Catalano, 1963: Activation of amino acids during sea urchin development. Arch. Biochem. Biophys. 103, 164–168.PubMedCrossRefGoogle Scholar
  166. Mangan, J., T. Miki-Noumura, and P. J. Gross, 1965: Protein synthesis and the mitotic apparatus. Science 147, 1575–1578.PubMedCrossRefGoogle Scholar
  167. Marsland, D., and A. M. Zimmerman, 1963: Cell division: differential effects of heavy water upon the mechanisms of cytokinesis and karyokinesis in the eggs of Arbacia punctulata. Exper. Cell Res. 30, 23–35.CrossRefGoogle Scholar
  168. Mazia, D., 1955: The organization of the mitotic apparatus. Symp. Soc. Exper. Biol. 9, 335–357.Google Scholar
  169. — —1957: Some problems in the chemistry of mitosis, in: Chemical Basis of Heredity (W. D. McElroy, and B. Glass, eds.), Baltimore: The Johns Hopkins Press. 1–169.Google Scholar
  170. — 1961: Mitosis and the physiology of cell division, in: The Cell, vol. III (J. Brachet, and A. E. Mirsky, eds), New York: Academic Press, 77–412.Google Scholar
  171. —1963: Synthetic activities leading to mitosis. J. Cell. Comp. Physiol. 62, Suppl. 1, 123–140.CrossRefGoogle Scholar
  172. R. Chaffee, and R. M. Iverson, 1961: Adenosine triphosphate in the mitotic apparatus. Proc. Nat. Acad. Sci. (Wash.) 47, 788–790.CrossRefGoogle Scholar
  173. and K. Dan, 1952: The isolation and biochemical characterization of the mitotic apparatus of dividing cells. Proc. Nat. Acad. Sci. (Wash.) 28, 826–838.Google Scholar
  174. P. J. Harris, and T. Bibring, 1960: The multiplicity of the mitotic centers and the time-course of their duplication and separation. J. Biophys. Biochem. Cytol. 7, 1–20.PubMedCrossRefGoogle Scholar
  175. J. M. Mitchison, H. Medina, and P. Harris, 1961: The direct isolation of the mitotic apparatus. J. Biophys. Biochem. Cytol. 10, 467–474.PubMedCrossRefGoogle Scholar
  176. and J. D. Roslansky, 1956: The quantitative relations between total cell proteins and the proteins of the mitotic apparatus. Protoplasma 46, 528–534.CrossRefGoogle Scholar
  177. Mazia, D., and A. M. Zimmerman, 1958: SH compounds in mitosis. II. The effect of mercaptoethanol on the structure of the mitotic apparatus in sea urchin eggs. Exper. Cell Res. 15, 138–153.CrossRefGoogle Scholar
  178. Mead, A. D., 1898: The origin and behavior of the centrosomes in the annelid egg. J. Morph. 14, 181–218.CrossRefGoogle Scholar
  179. Meves, F., 1903: Über Oligopyrene und Apyrene Spermien und über ihre Entstehung, nach Beobachtungen an Paludina und Pygaera. Arch. mikr. Anat. 61, 1–84.CrossRefGoogle Scholar
  180. Miki, T., 1962: The ATP-ase activity of the mitotic apparatus of the sea urchin egg. Exper. Cell Res. 29, 92–101.CrossRefGoogle Scholar
  181. — —1964: ATP-ase staining of sea urchin eggs during the first cleavage. Embryol. 8, 158–165.CrossRefGoogle Scholar
  182. Minouchi, O., 1936: Cytologische Studien über das Ei von Polystomum integerrimum von der Eiablage bis zu den frühen Furchungsstadien. Z. Zellforsch. 24, 85–127.CrossRefGoogle Scholar
  183. Mitchison, J. M., and M. M. Swann, 1953: Measurements on sea-urchin eggs with an interference microscope. Quart. J. microsc. Sci. 94, 381–389.Google Scholar
  184. Monroy, A., and A. Tyler, 1963: Formation of active ribosomal aggregates (polysomes) upon fertilization and development of sea urchin eggs. Arch. Biochem. and Biophys. 103, 431–435.CrossRefGoogle Scholar
  185. Montgomery, P. O’B., and W. A. Bonner, 1959: U. V. time lapse motion picture observations of mitosis in newt cells. Exper. Cell Res. 17, 378–384.CrossRefGoogle Scholar
  186. Moore, A. R., 1938: Segregation of “Cleavage-substance” in the unfertilized egg of Dendraster excentricus. Proc. Soc. Exper. Biol. Med. 38, 162–163.Google Scholar
  187. Morgan, T. H., 1896: The production of artificial astropheres. Arch. Entw. 3, 339–361.Google Scholar
  188. Mundkur, B. D., 1954: The nucleus of Sacdiaromyces: a cytologioal study of a frozen-dried polyploid series. J. Bacteriol. 68, 514–529.PubMedGoogle Scholar
  189. Nagano, T., 1959: Spermatogenesis of the domestic fowl studied with the electron microscope. Anat. Inst. Med. Fac. Okayama 164, 311–345. (In Japanese.)Google Scholar
  190. — 1961: Personal communication.Google Scholar
  191. — 1962: Observations on the fine structure of the developing spermatid in the domestic chicken. J. Cell Biol. 14, 193–205.PubMedCrossRefGoogle Scholar
  192. Nath, V., 1956: Cytology of spermatogenesis. Int. Rev. Cytol. 5, 395–453.CrossRefGoogle Scholar
  193. Nebel, B. R., and E. M. Coulon, 1962: The fine structure of chromosomes in pigeon spermatocytes. Chromosoma (Berlin) 13, 272–291.CrossRefGoogle Scholar
  194. Norman, W. W., 1896: Segmentation of the nucleus without segmentation of the protoplasm. Roux’ Arch. Entwicklungsmechanik Org. 3, 106–126.CrossRefGoogle Scholar
  195. Östergren, G., A. Koopmans, and J. Reitalu, 1953: The occurence of the amphiastral type of mitosis in higher plants and the influence of aminopyrin on mitosis. Botaniska Notiser 4, 417–419.Google Scholar
  196. J. Molè-Bajer, and A. Bajer, 1960: An interpretation of transport phenomena at mitosis. Ann. N. Y. Acad. Sci, 90, 381–408.PubMedCrossRefGoogle Scholar
  197. Payne, F., 1927: Some cytoplasmic structures in the male germ cells of Gelastocoris oculatus (toad-bug). J. Morph. 43, 299–345.CrossRefGoogle Scholar
  198. Pease, D. C., 1941: Hydrostatic pressure effects upon the spindle figure and chromosome movement. I. Experiments on the first mitotic division of Urechis eggs. J. Morph. 69, 405–441.CrossRefGoogle Scholar
  199. Pease, D. C., 1946: Hydrostatic pressure effects upon the spindle figure and chromosome movement. II. Experiments on the meiotie division of Tradescantia pollen mother cells. Biol. Bull. 91, 145–165.PubMedCrossRefGoogle Scholar
  200. Penrose, L. S., 1959: Self-reproducing machines. Sci. Amer. 200, 105–114.CrossRefGoogle Scholar
  201. Poglazov, B. F., 1961: The action of ATP and reducing agents on the achromatic apparatus of loach eggs (experiments in vivo). Tsitologiia 3, 204–206. (In Russian.)Google Scholar
  202. Pollister, A. W., 1933: Notes on centrioles of amphibian tissue cells. Biol. Bull. 65, 529–545.CrossRefGoogle Scholar
  203. Pollister, A. W. and P. F. Pollister, 1943: The relation between centriole and centromere in atypical spermatogenesis of viviparid snails. Ann. N. Y. Acad. Sci. 45, 1–48.CrossRefGoogle Scholar
  204. Pontecorvo, G., 1958: Self-reproduction and all that. Symposia Soc. Exptl. Biol. 12, 1–5.Google Scholar
  205. Porter, K. R., 1955: Changes in cell fine structure accompanying mitosis, in: Fine Structure of Cells. Sym. 8th Congress of Cell Biol. 236–250. New York: Interscience.Google Scholar
  206. Porter, K. R. and J. Blum, 1953: A study in microtomy for electron microscopy. Anat. Rec. 117, 685–712.PubMedCrossRefGoogle Scholar
  207. Porter, K. R. and R. D. Machado, 1960: Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J Biophys. Biochem. Cytol. 7, 167–180.PubMedCrossRefGoogle Scholar
  208. Rapkine, L., 1931: Sur les processus chemiques au cours de la division cellulaire. Ann. Physiol. Physicochem. Biol. 7, 382–418.Google Scholar
  209. Raven, C. P., 1958: Morphogenesis: The analysis of molluscan development. New York: Pergamon Press, xii, 1–311.Google Scholar
  210. Resende, F., 1947: Karyokinesis. Portug. Acta Biol. 2, 1–24.Google Scholar
  211. Richards, B. M., and A. Bajer, 1961: Mitosis in endosperm. Changes in nuclear and chromosome mass during mitosis. Exper. Cell Res. 22, 503–508.CrossRefGoogle Scholar
  212. Ris, H., 1955: Cell division, in: Analysis of Development (B. H. Willier, P. A. Weiss, and V. Hamburger, eds.), 1955. Philadelphia: W. B. Saunders Co. xii, 1–735.Google Scholar
  213. Roth, L. E., and E. W. Daniels, 1962: Electron microscope studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J. Cell Biol. 12, 57–78.PubMedCrossRefGoogle Scholar
  214. Roth, L. E., S. W. Obetz, and E. W. Daniels, 1960: Electron microscopic studies on mitosis and amoeba. I. Amoeba proteus. J. Biophys. Biochem. Cytol. 8, 207–220.PubMedCrossRefGoogle Scholar
  215. Rustad, R. C, 1959 a: Further observations relating radiation-induced mitotic delay to centriole damage. Biol. Bull. 117, 437.Google Scholar
  216. Rustad, R. C, 1959 b: The inhibition of mitosis in the sea urchin egg by acridine orange. Biol. Bull. 117, 437–438.Google Scholar
  217. Rustad, R. C, 1959 c: Induction of multipolar spindles by single X-irradiated sperm. Exper. 15, 323.CrossRefGoogle Scholar
  218. Rustad, R. C, 1959 d: An interference microscopical and cytochemical analysis of local mass changes in the mitotic apparatus during mitosis. Exper. Cell Res. 16, 575–583.CrossRefGoogle Scholar
  219. Rustad, R. C, 1959 e: 96. Centriole damage: a possible explanation of radiation-induced mitotic delay. Radiation Res. 11.Google Scholar
  220. Rustad, R. C, 1960: Changes in the sensitivity to ultraviolet-induced mitotic delay during the cell division cycle of the sea urchin egg. Exper. Cell Res. 21, 596–602.CrossRefGoogle Scholar
  221. Rustad, R. C, 1961 a: The centriole hypothesis of radiation-induced mitotic delay. Pathol.Biol. 9, 493–494.Google Scholar
  222. Rustad, R. C, 1961b: 130. The induction of mitotic delay by radiation and acridine orange. Radiation Res. 14.Google Scholar
  223. Ruthmann, A., 1958: The fine structure of the meiotic spindle of the crayfish. J. Biophys. Biochem. Cytol 5, 177–180.CrossRefGoogle Scholar
  224. Sager, R., 1965: On non-chromosomal heredity in microorganisms, in: Function and Structure in Microorganisms (M. R. Pollock and M. H. Richmond, eds.), London: Cambridge University Press, 324–342.Google Scholar
  225. Sakai, H., 1962 a: Studies on sulfhydryl groups during cell division of sea urchin egg. IV. Contractile properties of the thread model of KCl-soluble protein from the sea urchin egg. J. Gen. Physiol. 415, 411–425.CrossRefGoogle Scholar
  226. Sakai, H., 1962 b: Studies on sulfhydryl groups during cell division of sea urchin egg. V. Change in contractility of the thread model in relation to cell division. J. Gen. Physiol. 45, 427–438.PubMedCrossRefGoogle Scholar
  227. Sakai, H., and K. Dan, 1959: Studies on sulfhydryl groups during cell division of sea urchin egg. Exper. Cell Res. 16, 24–41.CrossRefGoogle Scholar
  228. Satir, P., and B. Satir, 1964: A model for ninefold symmetry in alpha-keratin and cilia. J. theor. Biol. 7, 123–128.PubMedCrossRefGoogle Scholar
  229. Satô, S., 1958: Electron microscope studies on the mitotic figure. I. Fine structure of the metaphase spindle. Cytol. (Tokyo) 23, 383–394.Google Scholar
  230. Satô, S., 1959: Electron microscope studies on the mitotic figure. II. Phragmoplast and cell plate. Cytol. (Tokyo) 24, 98–106.Google Scholar
  231. Satô, S., 1960: Electron microscopic studies on the mitotic figure. III. Process of spindle formation. Cytol. (Tokyo) 25, 119–131.Google Scholar
  232. Sauaia, H., and D. Mazia, 1961: Action of colchicine on the mitotic apparatus. Pathol. Biol. 9, 473–476.Google Scholar
  233. Schrader, F.. 1941: The spermatogenesis of the earwig Anisolabis maritima Bon. with reference to the mechanism of chromosomal movement. J. Morph. 68, 123–147.CrossRefGoogle Scholar
  234. Schrader, F., 1953: Mitosis: The Movements of Chromosomes in Cell Division. 2nd ed. New York: Columbia University Press, xii, 1–170.Google Scholar
  235. Schreiner, A., und K. E. Schreiner, 1905: Über die Entwicklung der männlichen Geschlechtszellen von Myxine glutinosa (L.) Arch. Biol. 21, 315–355.Google Scholar
  236. Schuel, H., 1961: A study of the effects of urethane on the cleavage of the Chaetopterus egg. I. Inhibition of cleavage. Biol Bull. 120, 384–400.CrossRefGoogle Scholar
  237. Schultz-Larsen, J., 1953: On the structure of the nuclear spindle. Acta Pathol. Microbiol. Scand. 32, 567–573.PubMedCrossRefGoogle Scholar
  238. Seaman, G. R., 1960: Large-scale isolation of kinetochores from the ciliated protozoan Tetrahymena pyriformis. Exper. Cell Res. 21, 292–302.CrossRefGoogle Scholar
  239. Seaman, G. R., 1962: Protein synthesis by kinetochores isolated; from the protozoan Tetrahymena. Biochim. Biophys. Acta 55, 889–899.CrossRefGoogle Scholar
  240. Sears, E. R., and A. Camara, 1952: A transmissible dicentric chromosome. Genetics 37, 125–135.PubMedGoogle Scholar
  241. Sentein, P., 1961 a: Action inhibitrice du phényluréthane sur la genèse des fibrilles pendant la seconde mitose de segmentation et accélération de la multiplication des centres cellulaires. Compt. rend. Soc. Biol. 155, 2418.Google Scholar
  242. Sentein, P., 1961 b: L’action des antimitotiques pendant la segmentation de l’oeuf et le mécanisme de cette action. Pathol. Biol. 9, 445–466.Google Scholar
  243. Sentein, P., 1962 a: Dissociation des différents mécanisms de la mitose de segmentation. Compt. rend. Acad. Sci., Paris, 254, 558–560.Google Scholar
  244. Sentein, P., 1962 b: Le déterminisme des mitoses pluripolares et leur mécanisme d’après l’action interrompue du phényluréthane sur l’oeuf d’urodèle. Chromosoma (Berlin) 13, 67–105.CrossRefGoogle Scholar
  245. Serra, J. A., and M. M. P. Seixas, 1962: On the existence of lipids in the centromere and the spindle. Rev. Portug. Zool. Biol. Geral. 3, 263–266.Google Scholar
  246. Sharp, L. W., 1921: An Introduction to Cytology. New York: McGraw-Hill Book Co., Inc. xiii, 1–452.CrossRefGoogle Scholar
  247. — 1934: Introduction to Cytology. New York: McGraw-Hill Book Co., Inc. xiv, 1–567.CrossRefGoogle Scholar
  248. Shimamura, T., and T. Ôta, 1956: Cytochemical studies on the mitotic spindle and the phragmoplast of plant cells. Exper. Cell Res. 11, 346–361.CrossRefGoogle Scholar
  249. — — and T. Hishida, 1957: Cytochemical studies on the mitotic spindle. Symposia Soc. Cellular Chem. (Tokyo) 16, 24–41. (In Japanese with American summary.)Google Scholar
  250. Sleigh, M. A., 1962: The Biology of Cilia and Flagella. Vol. 12 of Int. Series of Monographs on Pure and Applied Biology. Oxford: Pergamon Press, Ltd.Google Scholar
  251. Sotelo, J. R., and O. Trujillo-Cenoz, 1958 a: Electron microscope study of the kinetic apparatus in animal sperm cells. Z. Zellforsch. 48, 565–601.PubMedCrossRefGoogle Scholar
  252. — 1958 b: Electron microscope study on the development of ciliary components of the neural epithelium of the chick embryo. Z. Zellforsch. 49, 1–12.PubMedCrossRefGoogle Scholar
  253. Stafford, D. W., and R. M. Iverson, 1964: Radioautographic evidence for the incorporation of leucine-C14 into the mitotic apparatus. Science 143, 580–581.PubMedCrossRefGoogle Scholar
  254. W. H. Sofer, and R. M. Iverson, 1964: Demonstration of polyribosomes after fertilization of the sea urchin egg. Proc. Nat. Acad. Sci. (Wash.) 52, 313–316.CrossRefGoogle Scholar
  255. Stanier, R. Y., and C. B. van Niel, 1962: The concept of a bacterium. Arch. Mikrobiol. 42, 17–35.PubMedCrossRefGoogle Scholar
  256. Stern, H., 1956: Sulfhydryl groups and cell division. Sci. 124, 1292–1293.CrossRefGoogle Scholar
  257. — 1958: Variations in sulfhydryl concentration during microsporocyte meiosis in the anthers of Lilium and Trillium. I. Biophys. Biochem. Cytol. 4, 157–161.CrossRefGoogle Scholar
  258. Stich, H., 1951: Das Vorkommen von Kohlenhydraten im Ruhkern und während der Mitose. Chromosoma (Berlin) 4, 429–438.CrossRefGoogle Scholar
  259. — 1954 a: Stoffe und Strömungen in der Spindel von Cyclops strenuus. Ein Beitrag zur Mechanik der Mitose. Chromosoma (Berlin) 6, 199–236.CrossRefGoogle Scholar
  260. — 1954 b: Der Einfluß von Giften auf die zur Meiose führenden Stoffwechselvorgänge bei Sabellaria spinulosa. Exper. 10, 184–185.CrossRefGoogle Scholar
  261. — and J. McIntyre, 1958: X-ray absorption studies on the nuclear protein and RNA content during the development of the mitotic apparatus. Exper. Cell Res. 14, 635–638.CrossRefGoogle Scholar
  262. Strasburger, E., 1897: Kerntheilung und Befruchtung bei Fucus. Jahrb. wiss. Bot. 30, 351–374.Google Scholar
  263. Sturdivant, H. P., 1931: Central bodies in the sperm-forming divisions of Ascaris. Sci. 73, 417–418.CrossRefGoogle Scholar
  264. Swann, M. M., 1951 a: Protoplasmic structure and mitosis. I. The birefringence of the metaphase spindle and asters of the living sea-urchin egg. J. Exper. Biol. 28, 417–433.Google Scholar
  265. — 1951b: Protoplasmic structure and mitosis. II. The nature and cause of bire-fringence changes in the sea urchin at anaphase. J. Exper. Biol. 28, 434–444.Google Scholar
  266. — 1954: The mechanism of cell division: experiments with ether on the sea urchin egg. Exper. Cell Res. 7, 505–517.CrossRefGoogle Scholar
  267. Swingle, W., 1897: Zur Kenntniss der Kern- und Zelltheilung bei den Sphacelariaceen. Jahrb. wiss. Bot. 30, 297–350.Google Scholar
  268. Swingle, W. W., 1926: The germ cells of anurans. II. An embryological study of sex determination in Rana catesbeiana. J. Morph. 41, 441–546.CrossRefGoogle Scholar
  269. Szollosi, D., 1964: The structure and function of centrioles and their satellites in the jellyfish Phialidium gregarium. J. Cell Biol. 21, 465–479.PubMedCrossRefGoogle Scholar
  270. Taylor, E., 1959: Dynamics of spindle formation and its inhibition by chemicals. J. Biophys. Biochem. Cytol. 6, 193–196.PubMedCrossRefGoogle Scholar
  271. — 1963: Relation of protein synthesis to the division cycle in mammalian culture cells. J. Cell Biol. 19, 1–18.PubMedCrossRefGoogle Scholar
  272. Tschassownikow, S., 1914: Über Becher- und Flimmerepithelzellen und ihre Beziehungen zueinander. Arch. mikr. Anat. 84, 150–174.CrossRefGoogle Scholar
  273. Van Beneden, E., 1876: Contribution a l’historie de la vésicule germinative et du premier noyau embryonnaire. Bull. Acad. Roy. Belgique 41. (Cited in Wilson 1928.)Google Scholar
  274. — and A. Neyt, 1887: Nouvelles recherches sur la fécondation et la division cellulaire chez l’Ascaride mégalocéphale. Bull. Ac. Roy. de Belgique (Brussels) 7. (Cited in Wilson 1928.)Google Scholar
  275. Wada, B., 1950: The mechanism of mitosis based on studies of the submicroscopic structure and of the living state of the Tradescantia cell. Cytol. 16, 1–26.CrossRefGoogle Scholar
  276. Went, H. A., 1959: Studies on the mitotic apparatus of the sea urchin by means of antigen-antibody reactions in agar. J. Biophys. Biochem. Cytol. 6, 447–455.Google Scholar
  277. — 1960: Dynamic aspects of mitotic apparatus protein. Ann. N.Y. Acad. Sci. 90, 422–429.PubMedCrossRefGoogle Scholar
  278. — 1962: Structural modifications of the mitotic apparatus during the early cleavages in sand dollar eggs. Chromosoma (Berlin) 13, 219–242.CrossRefGoogle Scholar
  279. Wilson, E. B., 1897: Centrosome and middle-piece in the fertilization of the egg. Sci. N. S. 5, 390.Google Scholar
  280. — 1898: The Cell in Development and Inheritance. 1st Ed. New York: The MacMillan Co. xvii, 1–377.Google Scholar
  281. — 1901: A cytological study of artificial parthenogenesis in sea-urchin eggs. Arch. Entwicklungsmech. Org. (Berlin) 12. (Cited in Wilson 1928.)Google Scholar
  282. — 1928: The Cell in Development and Heredity. 3rd Ed. New York: The MacMillan Co. xxxvii, 1–1232.Google Scholar
  283. — 1930: The question of the central bodies. Sci, 71, 661–662.CrossRefGoogle Scholar
  284. — and A. F. Huettner, 1931: The central bodies again. Sci. 73, 447–448.CrossRefGoogle Scholar
  285. — and A. P. Mathews, 1895: Maturation, fertilization and polarity in the echinoderm egg. J. Morph. 10. (Cited in Hertwig 1906, 270.)Google Scholar
  286. Wolbach, S. B., 1928: Centrioles and the histogenesis of the myofibril in tumors of striated-muscle origin. Anat. Rec. 37, 255–274.CrossRefGoogle Scholar
  287. 1911: Spermatogenesis in certain Hepaticae. Ann. Bot. 25, 299–313.Google Scholar
  288. — 1913: Spermatogenesis in Blasia pusilla L. Ann. Bot. 27, 93–101.Google Scholar
  289. — 1915: Spermatogenesis in Mnium affine var. ciliaris (Grev.), C. M., Ann. Bot. 29, 441–456.Google Scholar
  290. 1904: Experiments on the development of egg fragments in Cerebratulus. Biol. Bull. 6, 123–136.CrossRefGoogle Scholar
  291. — 1905: The formation of centrosomes in enucleated egg-fragments. J. Exptl. Zool. 2, 287–312.CrossRefGoogle Scholar
  292. — 1908: Some experiments on cell-division in the egg of Cerebratulus lacteus. Ann. Zool. Japon. 6, 267.Google Scholar
  293. Zimmerman, A., 1960: Physico-chemical analysis of the isolated mitotic apparatus. Exper. Cell Res. 20, 529–547.CrossRefGoogle Scholar
  294. — and D. Marsland, 1964: Cell division: effects of pressure on the mitotic mechanisms of marine eggs (Arbacia punctulata). Exper. Cell Res. 35, 293–302.CrossRefGoogle Scholar
  295. Zirkle, R. E., R. B. Uretz, and R. H. Haynes, 1960: Disappearance of spindles and phragmoplasts after microbeam irradiation of cytoplasm. Ann. N.Y. Acad. Sci. 90, 435–439.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1966

Authors and Affiliations

  • Hans A. Went
    • 1
  1. 1.Department of ZoologyWashington State UniversityPullmanUSA

Personalised recommendations