Cytochemistry of the Histones

  • David P. Bloch
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 5 / 3a-d)


The histones and protamines were discovered along with the nucleic acids late in the last century by Friedrich Miescher 1. They were part of the “nuclein”, first extracted by Miescher in 1869 from pus cell nuclei obtained from old bandages gotten from the hospitals of Tübingen (Miescher 1897). This hard won material was one of a class of biological substances, including casein and phosphoproteins of egg yolk, which were then considered to be unique because of their acidic properties and phosphorus content. Twenty years later however, as the means were devised by Altmann (1889) for resolving the nuclein into its component parts, and the attributes which had previously aroused the most curiosity were found to reside in the nucleic acid portion, most attention was directed toward this substance and the associated proteins were treated as an unwanted by-product obtained during its isolation.


Basic Protein Histone Variation Fast Green Cytochemical Method Feulgen Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. d’Alcontres, G. S., 1953: Acerca de la presencia de protaminas en el polen. Acta cient. Venezolana 4, 23–24.Google Scholar
  2. Alfert, M., 1955: Changes in the staining capacity of nuclear components during cell degeneration. Biol. Bull. 109, 1–12.Google Scholar
  3. - 1956 a: Quantitative cytochemical studies on patterns of nuclear growth. In: Fine Structure of Cells, pp. 137–163, Interscience, New York.Google Scholar
  4. - 1956 b: Chemical differentiation of nuclear proteins during spermatogenesis in the salmon. J. Biophys. Biochem. Cytol. 2, 109–114.PubMedGoogle Scholar
  5. - 1958 a: Cytochemische Untersuchung an basischen Kernproteinen wôhrend der Gametenbildung, Befruchtung und Entwicklung. Ges. physiol. Chem., Colloq. 9, 73–84.Google Scholar
  6. - 1958 b: Variations in cytochemical properties of cell nuclei. Exper. Cell Res. Suppl., 6, 227–235.Google Scholar
  7. - H. A. Bern, and R. H. Kahn, 1955: Hormonal influence on nuclear synthesis II. Karyometric and microspectrophotometric studies of rat thyroid nuclei in different functional states. Acta anatomica 23, 185–205.PubMedGoogle Scholar
  8. - and I. I. Geschwind, 1953: A selective staining method for the basic proteins of cell nuclei. Proc. Nat. Acad. Sci., U. S. 39, 991–999.Google Scholar
  9. - and N. O. Goldstein, 1955: Cytochemical properties of nucleoproteins in Tetra-hymena pyriformis; a difference in protein composition between macro- and micronuclei. J. Exper. Zool. 130, 403–422.Google Scholar
  10. Allfrey, V. G., M. M. Daly, and A. E. Mirsky, 1955: Some observations on protein metabolism in chromosomes of non-dividing cells. J. Gen. Physiol. 38, 415–424.PubMedGoogle Scholar
  11. - V. C. Littau, and A. E. Mirsky, 1963: On the role of histones in regulating RNA synthesis in the cell nucleus. Proc. Nat. Acad. Sci., U. S. 49, 414–421.Google Scholar
  12. - A. E. Mirsky, and S. Osawa, 1957: Protein synthesis in isolated cell nuclei. J. Gen. Physiol. 40, 451–490.PubMedGoogle Scholar
  13. Altmann, R., 1889: Über Nucleinsôure. Arch. Anat. u. Physiol., Physiol. Abt., 409–411.Google Scholar
  14. Ando, T., I. Shinichi, G. Hashimoto, M. Yamasaki, and K. Iwai, 1952: Constituent amino acids, N-terminal residues, and the molecular weights of protamines. Bull. Chem. Soc. (Japan) 25, 132.Google Scholar
  15. Ansely, H. R., 1954: A cytological and cytophotometric study of alternative pathways of meiosis in the house centipede (Scutigera forceps, Rafinesque) Chromo-soma 6, 656–695.Google Scholar
  16. - 1957: A cytophotometric study of chromosome pairing. Chromosoma 8, 580–395.Google Scholar
  17. Archibald, W. J., 1947: A demonstration of some new methods of determining molecular weights from the data of the ultracentrifuge. J. Phys. Colloid Chem. 51, 1204–1214.PubMedGoogle Scholar
  18. Austin, C. R., 1962: Sex chromatin in embryonic and fetal tissue. Acta Cytologica 6, 61–68.PubMedGoogle Scholar
  19. Bayreuther, K., 1956: Die Oogenese der Tipuliden. Chromosoma 7, 506–557.Google Scholar
  20. Beermann, W., I960: Der Nukleolus als lebenswichtiger Bestandteil des Zellkernes. Chromosoma 11, 263–296.PubMedGoogle Scholar
  21. - 1961: Genaktivitôt und Genaktivierung in Riesenchromosomen. Verh. Deutsch. Zool. Ges. Akademische Verlagsgesellschaft, Leipzig, pp. 44–75.Google Scholar
  22. Beutler, E., M. Yeh, and V. F. Fairbanks, 1962: The normal human female as a mosaic of x-chromosome activity: Studies using the gene for G-6-PD deficiency as a marker. Proc. Nat. Acad. Sci., U. S. 48, 9–16.Google Scholar
  23. Birnstiel, M. L., M. I. H. Chipchase, 1963: The chemical and physical fractionation of nucleoli. Fed. Proc. 22, 473.Google Scholar
  24. -- and B. B. Hyde: The nucleolus, a source of ribosomes. Biophys. Biochem. Acta. (In press.)Google Scholar
  25. Bloch, D. P., 1958: Changes in the desoxyribonucleoprotein complex during the cell cycle. In: Frontiers in Cytology. Ed. by S. L. Palay, Yale Univ. Press, pp. 113–166.Google Scholar
  26. - 1962: On the derivation of histone specificity. rroc. Nat. Acad. Sci., U.S. 48, 324–326.Google Scholar
  27. - 1962 b: Histone synthesis in non-replication chromosomes. J. Histochem. Cytochem. 10, 137–144.Google Scholar
  28. - 1963: The histones: syntheses, functions, transitions. In: The Cell in Mitosis. Ed. by L. Levine, Academic Press, New York, pp. 205–224.Google Scholar
  29. - and S. D. Brack, 1964: Evidence for cytoplasmic synthesis of nuclear histone during spermatogenesis in the grasshopper Chortophaga viridifasciata (de Geer). J. Cell. Biol. 22, 327–340.PubMedGoogle Scholar
  30. - - 1965 a: Comparison of the timing of DNA and histone synthesis during the cell cycle. (In preparation.)Google Scholar
  31. - - 1965 b: A cytochemical method for the estimation of the ratio of protein bound (lysine + tyrosine) to ardinine, as applied in the characterization of histones. (In preparation.)Google Scholar
  32. - and G. C. Godman, 1955 a: A microspectrophotometric study of the synthesis of desoxyribonucleic acid and nuclear histone. J. Biophys. Biochem. Cytol. 1, 17–28.PubMedGoogle Scholar
  33. - -1955 b: Evidence of differences in the desoxyribonucleoprotein complex of rapidly dividing and non-proliferating cells. J. Biophys. Biochem. Cytol. 1, 531–550.PubMedGoogle Scholar
  34. - C. Morgan, G. C. Godman, C. Howe, and H. M. Rose, 1958: A correlated histochemical and electron microscopic study of the intranuclear crystalline aggregates of adenovirus (RI-APC virus) in HeLa cells. J. Biophys. Biochem. Cytol. 3, 1–8.Google Scholar
  35. - and H. Y. C. Hew, 1960 b: Changes in nuclear histones during fertilization, and early embryonic development in the pulmonate snail, Helix aspersa. J. Biophys. Biochem. Cytol. 8, 69–81.PubMedGoogle Scholar
  36. --1960 a: Schedule of spermatogenesis in the pulmonate snail Helix aspersa, with special reference to histone transition. J. Biophys. Biochem. Cytol. 7, 515–532.PubMedGoogle Scholar
  37. Bonner, J., and P. O. P. Ts’o, 1964: Then Nucleohistones. Holden-Day, San Francisco.Google Scholar
  38. Boveri, T., 1887: Über Differenzierung der Zellkerne wôhrend der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2, 688–693.Google Scholar
  39. Brink, R. A., 1958: Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol., 23, 379–391.Google Scholar
  40. - 1960: Paramutation and chromosome organization. Quart. Rev. Biol. 35, 120–135.PubMedGoogle Scholar
  41. - and Nilan, 1952: The relationship between light variegated and medium variegated pericarp in Maize. Genetics 37, 519–544.PubMedGoogle Scholar
  42. Brunish, R., and J. M. Luck, 1952: Amino acid incorporation in vivo into liver proteins. J. Biol. Chem. 198, 621–628.PubMedGoogle Scholar
  43. Bucher, N. L. R., and D. Mazia, 1960: Deoxyribonucleic acid synthesis in relation to duplication of centers in dividing eggs of the sea urchin, Strongylocentrotus purpuratus. J. Biophys. Biochem. Cytol. 7, 651–655.PubMedGoogle Scholar
  44. Busch, H., J. R. Davis, and D. C. Anderson, 1958: Labelling of histones and other nuclear proteins with L-lysine C14 in tissues of tumor bearing rats.. Cancer Res. 18, 916–926.PubMedGoogle Scholar
  45. - W. J. Steele, L. S. Hnilica, C. W. Taylor, and H. Mavioglu, 1963: Biochemistry of histones and the cell cycle. J. Comp. Cellular Physiol. 62, Suppl. 95–110.Google Scholar
  46. Butler, J. A. V., P. Simson, and P. Cohn, 1960: The presence of basic proteins in microsomes. Biochem. Biophys. Acta 38, 386–388.PubMedGoogle Scholar
  47. Caspersson, T. O., 1950: Cell Growth and Cell Function. New York, W. W. Norton and Co.Google Scholar
  48. Chargaff, E., and H. F. Saidel, 1949: On the nucleoproteins of avian tubercule bacilli. J. Biol. Chem. 177, 417–428.PubMedGoogle Scholar
  49. Clementi, A., 1921: Une novelle hypothese de travail sur la signification physiologique des protamines et des histones par rapport au metabolisme nucleaire. Arch. Intern. Physiol. 16, 100–118.Google Scholar
  50. Cole, A., 1962: A molecular model for biological contractility: Implications in chromosome structure and function. Nature 196, 211–214.PubMedGoogle Scholar
  51. Crampton, C. F., S. Moore, and W. H. Stein, 1955: Chromatographic fractionation of calf thymus histone. J. Biol. Chem. 215, 787–801.PubMedGoogle Scholar
  52. - and M. L. Petermann, 1960: The amino acid composition of proteins isolated from the ribonucleoprotein particles of rat liver. J. Biol. Chem. 234, 1642–1644.Google Scholar
  53. - W. H. Stein, and S. Moore, 1957: Comparative studies on chromatographically purified histones J. Biol. Chem. 225, 363–386.Google Scholar
  54. Cruft, H. J., J. Hindley, C. M. Mauritzen, and E. Stedman, 1957: Amino acid compositions of the six histones of calf-thymocytes. Nature 180, 1107–1109.PubMedGoogle Scholar
  55. - C. M. Mauritzen, and E. Stedman, 1958: The isolation and properties of 1.6 Sγ histone from calf thymocytes. Proc. Roy. Soc. (London) B, 149, 36–41.Google Scholar
  56. Daly, M. M., V. Allfrey, and A. E. Mirsky, 1952: Uptake of Glycine-N15 by components of cell nuclei. J. Gen. Physiol. 36, 173–179.PubMedGoogle Scholar
  57. - and A. E. Mirsky, 1955: Histones with high lysine content. J. Gen. Physiol 38, 405–414.PubMedGoogle Scholar
  58. Danielli, J. F., 1953: Cytochemistry, John Wiley and Sons, Inc., New York.Google Scholar
  59. Das., C. C., H. Gay, and B. P. Kaufmann, 1964 a: Histone-protein transition in Droso-phila melanogaster. I. Changes during spermatogenesis. Exper. Cell Res. 35, 507–514.Google Scholar
  60. - B. P. Kaufmann, and H. Gay, 1964 b: Histone protein transition in Drosophila melanogaster. II. Changes during early embryonic development. J. Cell Biol. 23, 423–430.PubMedGoogle Scholar
  61. Dass, S., and H. Ris, 1959: Submicroscopic organization of the nuclei during spermio-genesis in the grasshopper. J. Biophys. Biochem. Cytol. 4, 129–132.Google Scholar
  62. Davison, P. F., and J. A. V. Butler, 1956: Chemical composition of calf thymus nucleoprotein. Biochim. Biophys. Acta 21, 568–573.PubMedGoogle Scholar
  63. Deitch, A. D., 1955: Microspectrophotometric study of the binding of the anionic dye, napthol yellow S, by tissue sections and by purified proteins. Lab. Invest. 4 324–351.PubMedGoogle Scholar
  64. - 1961: An improved Sakaguchi reaction for cytophotometric use. J. Histochem. Cytochem. 9, 477–483.PubMedGoogle Scholar
  65. Evans, J. H., D. J. Holbrook Jr., and J. L. Irvin, 1962: Incorporation of labelled precursors into protein and nucleic acid of nuclei of regenerating liver. Exper. Cell Res. 28, 120–125.Google Scholar
  66. Felix, K., 1960: Protamines, Adv. Protein Chem. 15, 1–56.PubMedGoogle Scholar
  67. - H. Fischer, A. Krekels, and R. Mohr, 1951: Nucleoprotamin I. Z. physiol. Chem. 287, 224–234.Google Scholar
  68. - -- and M. Rauen, 1950: Clupein IX. Z. physiol. Chem. 286, 67–78.Google Scholar
  69. - and A. Mager, 1937: Clupeine VIII. Z. physiol. Chem. 249, 111–123.Google Scholar
  70. Feughelman, M., R. Langridge, W. E. Seeds, A. R. Stokes, H. R. Wilson, C. W. Hooper, M. H. F. Wilkins, R. K. Barclay, and L. D. Hamilton, 1955: Molecular structure of deoxyribose nucleic acid and nucleoprotein. Nature 175, 834–838.PubMedGoogle Scholar
  71. Ficq, A., and C. Pavan, 1957: Autoradiography of polytene chromosomes of Rhynchosciara angelae at different stages of larval development. Nature 180, 983–984.PubMedGoogle Scholar
  72. Flamm, W. G., and M. L. Birnsteil, 1964: Recent studies on the metabolism of nuclear basic proteins. In: The Nucleohistones, edited by J. Bonner and P. O. P. Ts’o, Holden-Day, San Francisco.Google Scholar
  73. Gall, J., 1959: Macronuclear duplication in the ciliated protozoan Euplotes. J. Biophys. Biochem. Cytol. 5, 295–308.PubMedGoogle Scholar
  74. - and L. B. Bjork, 1958: The spermatid nucleus of two species of grasshopper. J. Biophys. Biochem. Cytol. 4, 479–484.PubMedGoogle Scholar
  75. Gellows, J. G., 1935: The biochemistry of the lens. IV. The origin of the pigment in the lens. Arch. Ophthalmol. 14, 99–107.Google Scholar
  76. Gifford, E., 1964: Variation in histone concentration during floral induction in Chenopodium album and Xanthium. The Nucleohistones, ed. by J. Bonner and P. O. P. Ts’o, Holden-Day, San Francisco.Google Scholar
  77. Godman, G. C., A. D. Deitch, and P. Klemperer, 1958: The composition of the LE and hematoxylin bodies of systemic lupus erythematosus. Amer. J. Pathol. 34, 1–23.Google Scholar
  78. Goldstein, L., 1963: RNA and protein in nucleocytoplasmic interactions. Cell Growth and Cell Division, ed. R. J. C. Harris, Academic Press, New York.Google Scholar
  79. Grassé, P. P., N. Carasso, and P. Favard, 1956: Les ultrastructures cellulaires au cours de la spermiogenèse de l’escargot (Helix pomatia, L.). Ann. Sci. Nat. Zool. 18, 339–380.Google Scholar
  80. Hamer, D., 1955: The composition of the basic proteins of echinoderm sperm. Biol. Bull. 108, 35–39.Google Scholar
  81. Hnilica, L., E. W. Johns, and J. A. V. Butler, 1962: Observation of the species and tissue specificity of histones. Biochem. J. 82, 123–124.PubMedGoogle Scholar
  82. Holbrook, D. J. Jr., J. L. Irvin, E. M. Irvin, and J. Rotherham, 1960: Incorporation of glycine into protein and nucleic acid fractions of nuclei of liver and hepatoma. Cancer Res. 20, 1329–1337.PubMedGoogle Scholar
  83. Horn, E. C., 1962: Extranuclear histone in the amphibian oocyte. Proc. Nat. Acad. Sci., U. S. 48, 257–265.Google Scholar
  84. - and C. L. Ward, 1957: The localization of the basic proteins in the nuclei of larval Drosophila salivary glands. Proc. Nat. Acad. Sci., U. S. 43, 776–779.Google Scholar
  85. Hsu, T. C., 1962: Differential rate in RNA synthesis between euchromatin and heterochromatin. Exper. Cell Res. 27, 332–334.Google Scholar
  86. Huang, R. C., and J. Bonner, 1962: Histone, a suppressor of chromosomal RNA synthesis. Proc. Nat. Acad. Sci., U. S. 48, 1216–1222.Google Scholar
  87. Hultin, T., and R. Herne, 1949: Amino acid analysis of a basic protein fraction from sperm nuclei of some different invertebrates. Ark. Kemi. Minerol. Geol. 26 A. #20, 1–8.Google Scholar
  88. Jacob, F., and J Monod, 1961: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356.PubMedGoogle Scholar
  89. Kaye, J., 1958: Changes in the fine structure of the nuclei during spermiogenesis. J. Morph. 103, 311–330.Google Scholar
  90. Keck, K., and E. A. Choules, 1963: An analysis of cellular and subcellular systems which transform the species character of acid phosphatase in Acetabularia. J. Cell Biol. 18, 459–469.PubMedGoogle Scholar
  91. Kossel, A., 1928: The Protamines and Histones. Longmans Green and Co., London and New York.Google Scholar
  92. Lederberg, J., and T. Iino, 1956: Phase variation in Salmonella, Genetics 41, 743–757.PubMedGoogle Scholar
  93. Leslie, I., 1961: Biochemistry of heredity: A general hypothesis. Nature 189, 260–268.PubMedGoogle Scholar
  94. Levene, P. A., and L. W. Bass, 1931: Nucleic Acids. The Chemical Catalog Co., New York.Google Scholar
  95. Lewis, E. S., 1950: The phenomenon of position effect. Adv. Genetics 3, 73–115.Google Scholar
  96. Lindner, A., and T. Kutkam, 1962: Histone, DNA, and protein changes after treatment of tumor cells with 5-fluorouracil (5-FU). Abst. 2nd Ann. Meeting Amer. Soc. Cell Biol. p. 105.Google Scholar
  97. Lucy, J. A., and J. A. V. Butler, 1955: Fractionation of desoxyribonucleoprotein. Biochim. Biophys. Acta 16, 431–432.PubMedGoogle Scholar
  98. Lyon, M. F., 1961: Gene action in the x-chromosome of the mouse (Mus musculus. L.). Nature 190, 732–733.Google Scholar
  99. McClintock, B., 1955: Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8, 58–74.Google Scholar
  100. - 1961: Some parallels between gene controlled systems in maize and bacteria. Amer. Nat. 95, 265–277.Google Scholar
  101. McLeish, J., L. G. E. Bell, L. F. LaCour, and J. Chayen, 1956: The quantitative cytochemical estimation of arginine. Exper. Cell Res. 12, 120–125.Google Scholar
  102. - and H. S. A. Sherratt, 1958: The use of the Sakaguchi reaction for the cytochemical determination of combined arginine. Exper. Cell Res. 14, 625–628.Google Scholar
  103. Metz, C. W., 1938: Chromosome behavior, inheritance, and sex determination in Sciara. Amer. Nat. 72, 485–520.Google Scholar
  104. Miescher, F., 1897: Die histochemischen und physiologischen Arbeiten. Leipzig.Google Scholar
  105. Mirskey, A. E., and A. W. Pollister, 1946: Chromosin, a desoxyribose nucleoprotein complex of the cell nucleus. J. Gen. Physiol. 30, 117–148.Google Scholar
  106. - and H. Ris, 1948: The chemical composition of isolated chromosomes. J. Gen. Physiol. 31, 7–18.Google Scholar
  107. Monné, L., and D. P. Slaughterback, 1951: The disappearence of protoplasmic acidophilia upon deamination. Ark. Zool. Ser. 2,1, 455–462.Google Scholar
  108. Murray, K., 1964: In: The Nucleohistones. Ed. J. Bonner and P. O. P. Ts’o, Holden-Day, San Francisco.Google Scholar
  109. Neelin, J. M., and G. E. Connell, 1959: Zone electrophoresis of chicken erythrocyte histone in starch gel. Biochim. Biophys. Acta 31, 539–541.PubMedGoogle Scholar
  110. Ohno, S., W. D. Kaplan, and R. Kinosita, 1959: Formation of the sex chromatin by a single x-chromosome in liver cells of Rattus norvegicus. Exper. Cell Res. 18, 415–418.Google Scholar
  111. Palmade, C., M. R. Chevallier, A. Knobloch, and R. Vendrely, 1958: Isolement d’une deoxyribonucleohistone a partir d’Escherichia coll. C. r. Acad. Sci. 246, 2534–2537.Google Scholar
  112. Phillips, D. M. P., 1955: N-terminal groups in salmine. Biochem. J., 60, 403–409.PubMedGoogle Scholar
  113. Pollister, A. W., 1950: Quelques méthodes de cytologie chimique quantitative. Rev. d’Hematologie 5, 527–554.Google Scholar
  114. Prescott, D. M., 1962: Nucleic acid and protein metabolism in the macronuclei of two ciliated protozoa. J. Histochem. Cytochem. 10, 145–153.Google Scholar
  115. - and M. A. Bender, 1963: Synthesis and behavior of nuclear proteins during the cell cycle. J. Cell Comp. Physiol. 62, Suppl. 1, 175–194.Google Scholar
  116. - and R. F. Kimball, 1961: Relation between RNA, DNA, and protein synthesis in the replicating nucleus of Euplotes. Proc. Nat. Acad. Sci., U. S. 47, 686–693.Google Scholar
  117. Rasch, E., and J. W. Woodard, 1959: Basic proteins of pcant nuclei during normal and pathological cell growth. J. Biophys. Biochem. Cytol. 6, 263–276.PubMedGoogle Scholar
  118. Rasmussen, K. E., 1934: Clupeinuntersuchungen. I. Darstellung und Fraktionierung von Clupein. Z. physiol. Chem. 224, 97–114.Google Scholar
  119. Rauen, H. M., 1952: On the knowledge of clupeine and related proteins. Résumés des Communications, Deuxième Congrès International de Biochimie, Paris, Masson et Cie., p. 190.Google Scholar
  120. Rebhun, L., 1957: Nuclear changes during spermiogenesis in a pulmonate snail. J. Biophys. Biochem. Cytol. 3, 509–524.PubMedGoogle Scholar
  121. Ris, H., and A. W. Pollister, 1947: Nucleoprotein determination in cytological preparations. Cold Spring Harbor Symp. Quant. Biol. 12, 147–157.Google Scholar
  122. Ropshaw, H. J., 1933: Melanogenesis with special reference to sufhydryls and protamines. Amer. J. Physiol. 103, 535–552.Google Scholar
  123. Rybak, B., 1948: La rectification de la fecondations et de la mitose. C. r. Acad. Sci. 226, 1145–1146.Google Scholar
  124. Schultz, J., 1936: Variegation in Drosophila and the inert chromosome regions.Proc. Nat. Acad. Sci., U. S. 22, 27–33.Google Scholar
  125. Setterfield, G., J. M. Neelin, E. M. Neelin, and S. T. Bayley, 1960: Studies of basic proteins from ribosomes from buds of pea seedlings. J. Mol. Biol. 2, 416–424.PubMedGoogle Scholar
  126. Singer, M., 1952: Factors which control the staining of tissue sections with acid and basic dyes. Int. Rev. Cytology 1, 211–255.Google Scholar
  127. Stanier, R. Y., and C. B. Van Neil, 1962: The concept of a bacterium. Arch für Mikrobiol. 42, 17–35.Google Scholar
  128. Stedman, E., and E. Stedman, 1943: Probable function of histone as a regulator of mitosis. Nature 152, 556–557.Google Scholar
  129. - - 1947: The chemical nature and functions of the components of cell nuclei. Cold Spring Harbor Symp. Quant. Biol. 12, 224–236.Google Scholar
  130. - - 1950: Cell specificity of histones. Nature 166, 780–781.PubMedGoogle Scholar
  131. Stern, K., 1952: Problems in nuclear chemistry and biology. Exper. Cell Res. Suppl. 2, 1–15.Google Scholar
  132. Stich, H. V., and J. K. Naylor, 1957: Variation of desoxyribonucleic acid content of specific chromosome regions. Exper. Cell Res. 14, 442–445.Google Scholar
  133. Sud, B. N., 1961: Histochemistry and significance of the chromatoid body in spermato-genesis of the grass snake Natrix natrix. Biochem. J. 78, 16 P.Google Scholar
  134. Sutton, W. S., 1903: The chromosomes in heredity. Biol. Bull 4, 231–251.Google Scholar
  135. Taleporos, P., 1959: Cytoplasmic “histones”and “protamines”in the egg of the sea urchin Strongylocentrotus pur puratus. J. Histochem. Cytochem. 7, 322.Google Scholar
  136. Tamm, C., M. E. Hodes, and E. Chargaff, 1952: The formation of apurinic acid from the desoxyribonucleic acid of calf thymus. J. Biol. Chem. 195, 49–63.Google Scholar
  137. Taylor, J. H., 1960: Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J. Biophys. Biochem. Cytol. 7, 455–464.PubMedGoogle Scholar
  138. Taylor, J. H., P. S. Woods, and W. L. Hughes, 1957: Organization and duplication of chromosomes as revealed by autoradiographic studies using tritium labelled thymidine. Proc. Nat. Acad. Sci. (U.S.) 43, 122–128.Google Scholar
  139. Ts’o, P. O. P., J. Bonner, and H. Dintzis, 1958: On the similarity of amino acid composition of microsomal nucleoprotein particles. Arch. Biochem. Biophys. 76, 225–227.PubMedGoogle Scholar
  140. Ui, N., 1956: Molecular weights of calf thymus histones. Biochem. Biophys. Acta 22, 205–206.PubMedGoogle Scholar
  141. - 1957: Preparation, fractionation, and properties of calf thymus histone. Biophys. Biochim. Acta 25, 493–502.Google Scholar
  142. Umana, R.. S. Updike. and A. L. Dounce. 1962: Ratio of total histone to DNA in dividing and interphase cells. Fed. Proc. Soc. Exper. Biol. 21, 156.Google Scholar
  143. Van Slyke, D. D., 1911: A method for the quantitative determination of aliphatic amino groups. J. Biol. Chem. 9, 185–207.Google Scholar
  144. Vaughn, J. C., 1964: Personal communication.Google Scholar
  145. Vendrely, R.: 1957: Données récentes sur le chimie de l’ADN et des desoxyribonucleo-proteines. Arch. Julius-Klaus-Stiftung Vererbungsforschung, Sozialanthropologie, Rassenhygiene 32, 538–553.Google Scholar
  146. - M. Alfert, A. Knobloch, and H. Matsudaira, 1958: The composition of histone from pycnotic nuclei. Exper. Cell Res. 2, 295–300.Google Scholar
  147. - A. Knobloch, and H. Matsudaira, 1959: A comparative biochemical study of nucleohistone from different vertebrates. Nature 181, 343.Google Scholar
  148. - A. Knobloch-Mazen, and C. Vendrely, 1959: A comparative biochemical study of nucleohistones and nucleoprotamines in the cell nucleus. In: The Cell Nucleus. Ed. J. S. Mitchell, London, Butterworths, pp. 200–205.Google Scholar
  149. - and C. Vendrely, 1953: Arginine and deoxyribonucleic acid content of erythrocyte nuclei and sperms of some species of fishes. Nature 172, 30–31.PubMedGoogle Scholar
  150. Vincent, W. A., 1952: The isolation and chemical properties of the nucleoli of starfish oocytes. Proc. Nat. Acad. Sci., U. S. 38, 139–145.Google Scholar
  151. Waldschmidt-Leitz, E., and E. Gunther, 1948: Bausteinanalyse des Clupeins und Salmines. Makromol. Chem. 2, 120–126.Google Scholar
  152. Wilkins, M. H. F., and G. Zubay, 1959: The absence of histone in the bacterium Escherischia coli. II. X-ray diffraction of the nucleoprotein extract. J. Biophys. Biochem. Cytol. 5, 55–58.PubMedGoogle Scholar
  153. - - and H. R. Wilson, 1959: X-ray diffraction studies of the molecular structure of nucleohistone and chromosomes. J. Mol. Biol. 1, 179–185.Google Scholar
  154. Wimber, D. E., and H. Quastler, 1963: A 14C- and 3H-thymidine double labelling technique in the study of cell proliferation in Tradescantia root rips. Exper. Cell Res. 30, 8–22.Google Scholar
  155. Woodard, J. W., E. Rasch, and H. Swift, 1961: Nucleic acid and protein metabolism during the mitotic cycle in Vicia faba. J. Biophys. Biochem. Cytol. 9, 445–462.PubMedGoogle Scholar
  156. Wrinch, D. M., 1934: Chromosome behavior in terms of protein pattern. Nature 134, 978–979.Google Scholar
  157. Yasuzumi, G., and K. H. Ishida, 1957: Spermatogenesis in animals as revealed by electron microscopy. II. Submicroscopic structure of developing spermatid nuclei of grasshopper. J. Biophys. Biochem. Cytol. 3, 633–668.Google Scholar
  158. Yphantis, D., 1960: Rapid determination of molecular weights of peptides and proteins. 88, 586–601.Google Scholar
  159. Zbarskii, I. B., and P. A. Perevoshchikova, 1951: Makromol. Chem. 2, 120–126.Google Scholar
  160. Zeevaart, J. A. D., 1964: Chemical Basic of induction. In: The Nucleohistones. Ed. by J. Bonner and P. O. P. Ts’o.Google Scholar
  161. Zubay, G., and P. Doty, 1959: The isolation and properties of deoxyribonucleoprotein particles containing single nucleic acid molecules. J. Mol. Biol. 1, 1–20.Google Scholar
  162. - and M. R. Watson, 1959: The absence of histone in the bacterium Escherichia coli. I. Preparation and analysis of the nucleoprotein extract. J. Biophys. Biochem. Cytol. 5, 51–54.PubMedGoogle Scholar
  163. - and M. H. F. Wilkins, 1960: X-ray diffraction studies of the structure of ribosomes from Escherichia coli. J. Mol. Biol. 2, 105–112.Google Scholar

Copyright information

© Springer-Verlag/Wien 1966

Authors and Affiliations

  • David P. Bloch
    • 1
  1. 1.Botany DepartmentThe University of TexasAustinUSA

Personalised recommendations