Advertisement

The Chemistry and Biological Role of Nucleic Acids

  • Christoph Scholtissek
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 5 / 3a-d)

Abstract

The field of nucleic acids has grown to such a tremendeous size that it is impossible to include all publications concerning the chemistry and biological role of nucleic acids in an article of the length presented in this volume. Therefore, it is necessary to select the most important contributions and those not included in well-known reviews. In many cases reference is made only to the authors who summarized their specialized field in chapters of the three volumes of “The Nucleic Acids” (eds. E. Chargaff and J. N. Davidson, Acad. Press, New York 1955 and 1960) or to the “Nucleic Acid Outlines” (V. R. Potter, Burgess Publishing Comp. Minneapolis), where further literature and more detailed discussions may be found. Facts and theories will be dealt with, but not lists of references. Therefore it is not possible to follow in all cases the historical development of an idea and to acknowledge all publications which might be important and interesting from another point of view. Very little is mentioned about methods in the field of nucleic acids.

Keywords

Nucleic Acid Tobacco Mosaic Virus Deoxyribonucleic Acid Ribonucleic Acid Polynucleotide Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allfrey, V. G., and A. E. Mirsky, 1957: Some aspects of ribonucleic acid synthesis in isolated cell nuclei. Proc. Nat. Acad. Sci., U. S. 43, 821–826.Google Scholar
  2. Astbury. W. T.. and F. O. Bell. 1958: X-ray study of thymonucleic acid. Nature 141, 747–748.Google Scholar
  3. Astrachan, L., and E. Volkin, 1958: Properties of ribonucleic acid turnover in T2-infected Escherichia coli. Biochim. Biophys. Acta 29, 536–544.PubMedGoogle Scholar
  4. Avery, O. T.. C. M. MacLeod, and M. McCarty, 1944: Studies on the chemical nature of the substance inducing plaque formation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumo-coccus type III. J. Exper. Med. 79, 137–158.Google Scholar
  5. Baddiiey, J., 1955: Chemistry of nucleosides and nucleotides. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 137–190.Google Scholar
  6. Baltimore, D., and R. M. Franklin, 1962: Preliminary data on a virus-specific enzyme system responsible for the synthesis of viral RNA. Biochem. Biophys. Res. Comm. 9, 388–392.PubMedGoogle Scholar
  7. Barondes, S. H., C. W. Dingman, and M. B. Sporn. 1962: In vitro stimulation of amino-acid incorporation into protein by liver nuclear RNA. Nature 196, 145– 147.PubMedGoogle Scholar
  8. Barry, R. D., D. R. Ives, and J. G. Cruickshank, 1962: Participation of deoxyribo-nucleic acid in the multiplication of influenza virus. Nature 194, 1139–1140.PubMedGoogle Scholar
  9. Beaven, G. H., E. R. Holiday, and E. A. Johnson, 1955: Optical properties of nucleic acids and their components. In: Chargaff and Davidson, The Nucleic acids I, Academic Press: New York, pp.493–553.Google Scholar
  10. Bendich, A., 1955: Chemistry of purines and pyrimidines. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York. pp.81–136.Google Scholar
  11. Berg, P., 1961: Specificity in protein synthesis. Ann. Rev. Biochem. 30, 293–324.Google Scholar
  12. Bollum, F. J. 1959: Thermal conversion of nonpriming deoxyribonucleic acid to primer. J. Biol. Chem. 234, 2733–2734.PubMedGoogle Scholar
  13. - and V. R. Potter, 1957: Thymidine incorporation into deoxyribonucleic acid of rat liver homogenates. J. Amer. Chem. Soc. 79, 3603–5604.Google Scholar
  14. -- – 1958: Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues. J. Biol. Chem. 233, 478–482.PubMedGoogle Scholar
  15. --1959: Nucleic acid metabolism in regenerating rat liver VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res 19, 561–565.PubMedGoogle Scholar
  16. Brenner, S., 1957: On the impossibility of all overlapping triplet codes in information transfer from nucleic acid to proteins. Proc. Nat. Acad. Sci., U. S. 43, 687–694.Google Scholar
  17. - F. Jacob, and M. Meselson, 1961: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581.PubMedGoogle Scholar
  18. Bretscher, M. S., and Grunberg-Manago, 1962: Polyribonucleotide-directed protein synthesis using an E. coli cell-free system. Nature 195, 283–284.PubMedGoogle Scholar
  19. Brown, D. M., and A. R. Todd, 1952: Nucleotides X. Some observations on the structure and chemical behavior of the nucleic acids. J. Chem. Soc. 1952, 52–58.Google Scholar
  20. -- 1953: Nucleotides XXI. The action of ribonuclease on simple esters of the monoribonucleotides. J. Chem. Soc. 1953, 2040–2049.Google Scholar
  21. --1955: Evidence on the nature of the chemical bonds in nucleic acids. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 409–445.Google Scholar
  22. Brownhill, T. J., A. S. Jones, and M. Stacey, 1959: The inactivation of ribonuclease during the isolation of ribonucleic acids and ribonucleoproteins from yeast. Biochem. J. 73, 434–438.PubMedGoogle Scholar
  23. Buchanan, J. M., 1960: Biosynthesis of purine nucleotides. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp. 303–322.Google Scholar
  24. Burton, K., and G. B. Petersen, 1960: The frequences of certain sequences of nucleotides in deoxyribonucleic acid. Biochem. J. 75, 17–27.PubMedGoogle Scholar
  25. Cairns, J., 1962: The application of autoradiography to the study of DNA viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 311–318.PubMedGoogle Scholar
  26. - 1963: The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208–213.PubMedGoogle Scholar
  27. Caspersson, T., 1940: Nucleinsäureketten und Genvermehrung. Chromosoma 1, 605– 619.Google Scholar
  28. Chargaff, E., 1950: Chemical specificity of nucleic acids and mechanism of their enzymatical degradation. Experientia 6, 201–209.PubMedGoogle Scholar
  29. - and S. Zamenhof, 1948: The isolation of highly polymerized desoxyribonucleic acid from yeast cells. J. Biol. Chem. 173, 327–335.PubMedGoogle Scholar
  30. Chamberlin, M., and P. Berg, 1962: Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc. Nat. Acad. Sci., U. S. 48, 81–94.Google Scholar
  31. Cohn, W. E., 1955: The separation of nucleic acid derivates by Chromatography on ion-exchange columns. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp.211–241.Google Scholar
  32. Cramer, F., 1961: Probleme der chemischen Polynucleotid-Synthese. Angew. Chem. 73, 49–56.Google Scholar
  33. - and K. H. Scheit, 1962: Eine neue Methode zur Synthese von Ribo-oligonucleo-tiden: Die Darstellung von Uridyl-(3′ ➝5′)-uridin-3′-phosphat. Angew. Chem. 74, 717.Google Scholar
  34. Crick, F. H. C, L. Barnett, S. Brenner, and R. J. Watts-Tobin: General nature of the genetic code for proteins. Nature 192, 1227–1232.Google Scholar
  35. Crosbie, G. W., 1960: Biosynthesis of pyrimidine nucleotides. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp. 323–348.Google Scholar
  36. Davidson, J. N., and E. Chargaff, 1955: Introduction. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 1–8.Google Scholar
  37. DiMayorca, G. A., B. E. Eddy, S. E. Stewart, W. S. Hunter, C. Friend, and A. Bendich, 1959: Isolation of infectious deoxyribonucleic acid from SE polyoma-infected tissue cultures. Proc. Nat. Acad. Sci., U. S. 45, 1805–1808.Google Scholar
  38. Doerfler, W., W. Zillig, E. Fuchs, and M. Albers, 1962: Untersuchungen zur Biosynthese der Proteine V. Die Funktion von Nucleinsäuren beim Einbau von Aminosäuren in Proteine in einem zellfreien System aus E. coli. Z. physiol. Chem. 330, 96–123.Google Scholar
  39. Doty, P., J. Marmur, J. Eigner, and C. Schildkraut, 1960: Strand separation and specific recombination in deoxyribonucleic acids: Physical chemical studies. Proc. Nat. Acad. Sci., U. S. 46, 461–476.Google Scholar
  40. Dounce, A. L. 1955: The isolation and composition of cell nuclei and nucleoli. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp. 93–153.Google Scholar
  41. Edström, J. E., and W. Beermann, 1962: The base composition of nucleic acids in chromosomes, puffs, nucleoli, and cytoplasm of Chironomus salivary gland cells. J. Cell Biol. 14, 371–380.PubMedGoogle Scholar
  42. Felsenfeld, G., and A. Rich, 1957: Studies on the formation of two- and three-stranded polyribonucleotides. Biochim. Biophys. Acta 26, 457–468.PubMedGoogle Scholar
  43. Freese, E., 1963: Molecular mechanism of mutations. In: Taylor, Molecular Genetics I, Academic Press: New York and London, pp. 207–269.Google Scholar
  44. - E. Bautz, and E. Bautz-Freese, 1961: The chemical and mutagenic specificity of hydroxylamine. Proc. Nat. Acad. Sci., U. S. 47, 845–855.Google Scholar
  45. Furth, J. J., J. Hurwitz, and M. Anders, 1962: The role of deoxyribonucleic acid in ribonucleic acid synthesis. I. The purification and properties of ribonucleic acid polymerase. J. Biol. Chem. 237, 2611–2619.PubMedGoogle Scholar
  46. Geiduschek, E. P., J. W. Moohr, and S. B. Weiss, 1962: The secondary structure of complementary RNA. Proc. Nat. Acad. Sci., U. S. 48, 1078–1086.Google Scholar
  47. Gierer, A., 1963: Function of aggregated reticulocyte ribosomes in protein synthesis. j. Mol. Biol. 6, 148–157.PubMedGoogle Scholar
  48. - and K. W. Mundry, 1958: Production of mutants of tobacco mosaic virus by chemical alteration of its ribonucleic acid in vitro. Nature 182, 1457–1458.PubMedGoogle Scholar
  49. - and G. Schramm, 1956: Infectivity of ribonucleic acid from tobacco mosaic virus Nature 177, 702–703.PubMedGoogle Scholar
  50. Glock, G. E., 1955: Biosynthesis of pentoses. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp. 247-–275.Google Scholar
  51. Goldberg, I. H., M. Rabinowitz, and E. Reich, 1962: Basis of actinomycin action I. DNA binding and inhibition of RNA-polymerase synthetic reactions by acti-nomycin. Proc. Nat. Acad. Sci., U.S. 48, 2091–2101.Google Scholar
  52. Goldstein, L., and W. Plaut, 1955: Direct evidence for nuclear synthesis of cyto-plasmic ribonucleic acid. Proc. Nat. Acad. Sci., U..S. 41, 874–880.Google Scholar
  53. Gomatos, P. J., and I. Tamm, 1963: The secondary structure of reovirus RNA. Proc. Nat. Acad. Sci., U. S. 49, 707–714.Google Scholar
  54. Goodman, H. M., and A. Rich, 1962: Formation of a DNA-soluble RNA hybride and its relation to the origin, evolution, and degeneracy of soluble RNA. Proc. Nat. Acad. Sci., U. S. 48, 2101–2109.Google Scholar
  55. Gros, F., H. Hiatt, W. Gilbert, C. G. Kurland, R. W. Risebrough, and J. D. Watson, 1961: Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature 190, 581–585.PubMedGoogle Scholar
  56. Grunberg-Manago, M., and S. Ochoa, 1955: Enzymatic synthesis and breakdown of polyribonucleotides; polynucleotide phosphbrylase. J. Amer. Chem. Soc. 77, 3165–3166.Google Scholar
  57. Guthrie, G. D., and R. L. Sinsheimer, 1960: Infection of protoplasts of Escherichia coli by subviral particles of bacteriophage Ф X 174. J. Mol. Biol. 2, 297–305.Google Scholar
  58. Hall, B. D., and S. Spiegelman, 1961: Sequence complementarity of T2-DNA and T2-specific RNA. Proc. Nat. Acad. Sci., U. S. 47, 137–146.Google Scholar
  59. Handschumacher, R. E., and A. D. Welch, 1960: Agents which influence nucleic acid metabolism. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York; pp.455–526.Google Scholar
  60. Harbers, E., and W. Müller, 1962: On the inhibition of RNA synthesis by actino-mycin. Biochem. Biophys. Res. Comm. 7, 107–110.PubMedGoogle Scholar
  61. Haselkorn, R., and P. Doty, 1961 : The reaction of formaldehyde with polynucleotides. J. Biol. Chem. 236, 2738–2745.PubMedGoogle Scholar
  62. Hayashi, M., and S. Spiegelman, 1961: The selective synthesis of informational RNA in bacteria. Proc. Nat. Acad. Sci., U. S. 47, 1564–1580.Google Scholar
  63. Hecht, L. I., P. C. Zamecnik, M. L. Stephenson, and J. F. Scott, 1958: Nucleoside triphosphates as precursors of ribonucleic acid end groups in a mammalian system. J. Biol. Chem. 233, 954–963.PubMedGoogle Scholar
  64. Heppel, L. A., and J. C. Rabinowitz, 1958: Enzymology of nucleic acids, purines, and pyrimidines. Ann. Rev. Biochem. 27, 613–642.PubMedGoogle Scholar
  65. Herbert, E., and C. W. Wilson, 1962 a: Determination of nucleotide sequences in soluble ribonucleic acid I. Pyrophosphorolysis and reconstitution of a fraction of soluble ribonucleic acid. Biochim. Biophys. Acta 61, 750–761.PubMedGoogle Scholar
  66. -- 1962 b: Determination of nucleotide sequences in soluble ribonucleic acid II. Determination of nucleotide sequences in oligonucleotides derived from the acceptor end of pyrophosphorolyced soluble ribonucleic acid. Biochim. Biophys. Acta 61, 762–774.Google Scholar
  67. Hershey, A. D., and M. Chase, 1953: Independent functions of viral protein and nucleic acid in growth of bacteriophages. J. Gen. Physiol. 36, 39–56.Google Scholar
  68. Hiatt, H. H., 1962: A rapidly labeled RNA in rat liver nuclei. J. Mol. Biol. 5, 217–229.PubMedGoogle Scholar
  69. Hilmoe, R. J., and L. A. Heppel, 1957: Polynucleotide phosphorylase in liver nuclei. J. Amer. Chem. Soc. 79, 4810–4811.Google Scholar
  70. Hofschneider, P. H., 1960: Über ein infektiöses Desoxyribonucleinsäure-Agens aus dem Phagen Ф X 174. Z. Naturforsch. 15 b, 441–444.Google Scholar
  71. Hogeboom, G. H., and W. C. Schneider, 1955: The cytoplasm. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp. 199–246.Google Scholar
  72. Hotchkiss, R. D., 1955: The biological role of the deoxypentose nucleic acids. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp.435–473.Google Scholar
  73. Hurwitz, J., A. Bresler, and R. Diringer, I960: The enzymatic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA. Biochim. Biophys. Res. Comm. 3, 15–19.Google Scholar
  74. - J. J. Furth, M. Malamy, and M. Alexander, 1962: The role of deoxyribonucleic acid in ribonucleic acid synthesis III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc. Nat. Acad. Sci., U. S. 48, 1222–1230.Google Scholar
  75. Ito, Y., 1960: A tumor-producing factor extracted by phenol from papillomatous tissues (Shope) of cotton tail rabbits. Virology 12, 596–601.PubMedGoogle Scholar
  76. Jacob, F., and J. Monod, 1961: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356.PubMedGoogle Scholar
  77. Jones jr., O. W., and M. W. Nirenberg, 1962: Qualitative survey of RNA code words. Proc. Nat. Acad. Sci., U. S. 48, 2115–2123.Google Scholar
  78. Jordan, D. O., 1955: The physical properties of nucleic acids. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp.447–492.Google Scholar
  79. Josse, J., H. D. Kaiser, and A. Kornberg, 1961: Enzymatic synthesis of deoxyribonucleic acid VIII. Frequences of nearest neighbor base sequences in deoxyribonucleic acid. J. Biol. Chem. 236, 864–875.PubMedGoogle Scholar
  80. Kersten, W., and H. Kersten, 1962: Zur Wirkungsweise von Actinomycinen III Bindung von Actinomycin C an Nucleinsäuren und Nucleotide. Z. physiol. Chem. 330, 21–30.Google Scholar
  81. Khorana, H. G., 1960: Chemical and enzymatic synthesis of polynucleotides. In: Chargaff und Davidson, The Nucleic Acids III, Academic Press: New York,. pp. 105–146.Google Scholar
  82. - 1961: Some Recent Developments in the Chemistry of Phosphate Esters of Biological Interest. J. Wiley & Sons: New York.Google Scholar
  83. Kornberg, A., 1961: Enzymatic Synthesis of DNA. Ciba Lectures in Microbial Biochemistry J. Wiley & Sons: New York and London.Google Scholar
  84. - I. R. Lehmann, M. J. Bessman, and E. S. Simms, 1956: Enzymic synthesis of deoxy-ribonucleic acid. Biochim. Biophys. Acta 21, 197–198.PubMedGoogle Scholar
  85. Kunitz, M., 1940: Crystalline ribonuclease. J. Gen. Physiol. 24, 15–32.PubMedGoogle Scholar
  86. Lajtha, L. G., 1960: The effect of radiations on nucleic acid metabolism. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp. 527–546.Google Scholar
  87. Lehman, I. R., 1960: The deoxyribonucleases of Escherichia coli I. Purification and properties of a phosphodiesterase. J. Biol. Chem. 235, 1479–1487.PubMedGoogle Scholar
  88. - G. G. Roussos, and E. A. Pratt, 1962: The deoxyribonucleases of Escherichia coli II. Purification and properties of a ribonucleic acid-inhibitable endonuclease. J. Biol. Chem. 237, 819–828.PubMedGoogle Scholar
  89. Lengyel, P., J. F. Speyer, and S. Ochoa, 1961: Synthetic polynucleotides and the amino acid code. Proc. Nat. Acad. Sci., U. S. 47, 1936–1942.Google Scholar
  90. Levinthal, C., A. Keynan, and A. Higa, 1962: Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc. Nat. Acad. Sci., U. S. 48, 1631–1638.Google Scholar
  91. Marks, P. A., C. Willson, J. Kruh, and F. Gros, 1962: Unstable ribonucleic acid in mammalian blood cells. Biochem. Biophys. Res. Comm. 7, 9–14.Google Scholar
  92. Marmur, J., and P. Doty, 1959: Heterogeneity in deoxyribonucleic acids I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature 183, 1427–1429.PubMedGoogle Scholar
  93. Matthaei, J. H., and M. W. Nirenberg, 1961: Characteristics and stabilization of DNase-sensitive protein synthesis in E. coli extracts. Proc. Nat. Acad. Sci., U. S. 47, 1580–1588.Google Scholar
  94. - O. W. Jones, R. G. Martin, and M. W. Nirenberg, 1962: Characteristics and composition of RNA coding units. Proc. Nat. Acad. Sci., U. S. 48, 666–677.Google Scholar
  95. McCully, K. S., and G. L. Cantoni, 1962: Studies on soluble ribonucleic acid (s-RNA) of rabbit liver VII. A base sequence model of s-RNA. J. Mol. Biol. 5, 497–505.Google Scholar
  96. McMaster-Kaye, R., 1960: The metabolic characteristics of nucleolar, chromosomal, and cytoplasmic ribonucleic acid of Drosophila salivary glands. J. Biophys. Biodhem. Cytol. 8, 365–378.Google Scholar
  97. Meselson, M., and W. Stahl, 1958: The replication of DNA in Escherichia coli. Proc. Nat. Acad. Sci., U. S. 44, 671–682.Google Scholar
  98. Michelson, A. M., 1958: Hyperchromicity and nucleic acids. Nature 182, 1502–1503.PubMedGoogle Scholar
  99. - 1959: Polynucleotides I. Synthesis and properties of some polyribonucleotides. J. Chem. Soc. 1959, 1371–1394.Google Scholar
  100. - 1961: Chemistry of the nucleotides. Ann. Rev. Biochem. 30, 133–164.Google Scholar
  101. - 1963: The Chemistry of Nucleosides and Nucleotides. Academic Press: London and New York.Google Scholar
  102. Nagata, T., 1963: The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc. Nat. Acad. Sci., U. S. 49, 551–559.Google Scholar
  103. Nirenberg, M. W., and J. H. Matthaei, 1961: The dependence of cell-free protein synthesis in E. coli upon naturally occuring or synthetic polyribonucleotides. Proc. Nat. Acad. Sci., U. S. 47, 1588–1602.Google Scholar
  104. Ochoa, S., D. P. Burma, H. Kröger, and J. D. Weill, 1961: Deoxyribonucleic acid-dependent incorporation of nucleotides from nucleoside triphosphates into ribonucleic acid. Proc. Nat. Acad. Sci., U. S. 47, 670–679.Google Scholar
  105. Pelling, C., 1959: Chromosomal synthesis of ribonucleic acid as shown by the incorporation of uridine labelled with tritium. Nature 184, 655–656.PubMedGoogle Scholar
  106. Penman, S., K. Scherrer, Y. Becker, and J. E. Darnell, 1963: Polyribosomes in normal and poliovirus-infected HeLa cells and their relationship to messenger-RNA. Proc. Nat. Acad. Sci., U. S. 49, 654–662.Google Scholar
  107. Potter, V. R., 1960: Nucleic Acid Outlines, Burgess Publishing Company: Minneapolis, Minn.Google Scholar
  108. Prescott, D. M., 1959: Nuclear synthesis of cytoplasmic ribonucleic acid in Amoeba proteus. J. Biochem. Biophys. Cytol. 6, 203–206.Google Scholar
  109. Radding, C. M., J. Josse, and A. Kornberg, 1962: Enzymatic synthesis of deoxyribo-nucleic acid XII. A polymer of deoxyguanylate and deoxycytidylate. J. Biol. Chem. 237, 2869–2876.PubMedGoogle Scholar
  110. Razzell, W. E., and H. G. Khorana, 1958: The stepwise degradation of thymidine oligonucleotides by snake venom and spleen phosphodiesterases. J. Amer. Chem. Soc. 80, 1770–1771.Google Scholar
  111. -- 1959: Studies on polynucleotides IV. Enzymatic degradation. The stepwise action of venom phosphodiesterase on deoxyribo-oligonucleotides. J. Biol. Chem. 234, 2114–2117.PubMedGoogle Scholar
  112. Reddi, K. K., 1959: Structural differences in the nucleic acids of some tobacco mosaic virus strains II. Di- and trinucleotides in ribonuclease digests. Biochim. Biophys. Acta 32, 386–392.PubMedGoogle Scholar
  113. Reich, E., R. M. Franklin, A. J. Shatkin, and E. L. Tatum, 1961 : Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556–557.PubMedGoogle Scholar
  114. ---- 1962: Action of actinomycin on animal cells and viruses. Proc. Nat. Acad. Sci., U. S. 48, 1238–1245.Google Scholar
  115. Reichard, P., 1955: Biosynthesis of purines and pyrimidines. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp. 277–308.Google Scholar
  116. Rich, A., and D. R. Davis, 1956: A new two stranded helical structure: Polyadenylic acid and polyuridylic acid. J. Amer. Chem. Soc. 78, 3548–3549.Google Scholar
  117. Rosset, R., and R. Monier, 1963: On the instability of transfer-RNA terminal nucleotide sequence in yeast. Biochem. Biophys. Res. Comm. 10, 195–199.Google Scholar
  118. Roth, J. S., 1958: Ribonuclease VIII. Studies on the inactive ribonuclease in the supernatant fraction of rat liver. J. Biol. Chem. 231, 1097–1105.PubMedGoogle Scholar
  119. Rott, R., and C. Scholtissek, 1964: Einfluß von Actinomycin auf die Vermehrung von Myxoviren. Z. Naturforsch. 19 b, 316–323.Google Scholar
  120. Rushizky, G. W., and C. A. Knight, 1960: An oligonucleotide mapping procedure and its use in the study of tobacco mosaic virus nucleic acid. Virology 11, 236–249.PubMedGoogle Scholar
  121. Sandron, C. L., 1960: Deoxyribonucleic acids as macromolecules. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp. 1–37.Google Scholar
  122. Sato, K., and F. Egami, 1960: Ribonuclease in takadiastase. Nature 185, 462–463.Google Scholar
  123. Schachman, H. K., J. Adler, C. M. Radding, I. R. Lehman, and A. Kornberg, I960: Enzymatic synthesis of deoxyribonucleic acid VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J. Biol. Chem. 235, 3242–3249.PubMedGoogle Scholar
  124. Schaller, H., G. Weimann, and H. G. Khorana, 1963: The synthesis of deoxyribo-polynucleotides containing specific nucleotide sequences. J. Amer. Chem. Soc. 85, 355–356.Google Scholar
  125. Scherrer, K., and J. E. Darnell, 1962: Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem. Biophys. Res. Comm. 7, 486–490.PubMedGoogle Scholar
  126. - H. Latham, and J. E. Darnell, 1963: Demonstration of an unstable RNA and of a precursor to ribosomal RNA in HeLa cells. Proc. Nat. Acad. Sci., U. S. 49, 240–248.Google Scholar
  127. Schildkraut, C. L., J. Marmur, J. R. Fresco, and P. Doty, 1961: Formation and properties of polyribonucleotide-polydeoxyribonucleotide helical complexes. J. Biol. Chem. 236, PC2-PC4.PubMedGoogle Scholar
  128. Schlenk, F., 1955: Biosynthesis of nucleosides and nucleotides. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp.309–339.Google Scholar
  129. Schmidt, G., 1955: Nucleases and enzymes attacking nucleic acid components. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 555–626.Google Scholar
  130. Scholtissek, C., 1957: Auftrennung des bei der Ribonucleaseverdauung anfallenden, höhermolekularen Anteils (Core) der Ribonucleinsäure durch Papierelektrophorese. Z. physiol. Chem. 309, 129–135.Google Scholar
  131. - 1959 a: Charakterisierung von Ribonucleinsäuren verschiedener Herkunft, die gleiche Basenverhältnisse besitzen, durch enzymatischen Abbau. Biochem. Z. 331, 138–143.PubMedGoogle Scholar
  132. Scholtissek, C., 1959 b: Beziehungen zwischen der Ribonucleinsäuresynthese im Zellkern und in verschiedenen Cytoplasmafraktionen. Biochem. Z. 331, 365–374.Google Scholar
  133. - 1960 a: Verwandtschaftsbeziehungen zwischen den Ribonucleinsäuren des Zellkerns, der Mitochondrien, Mikrosomen und des Zellsaftes bei Rattenleber, Milz und Nieren. Biochem. Z. 332, 458–466.PubMedGoogle Scholar
  134. - 1960 b: Veränderungen von in vivo mit P32 markierter Ribonucleinsäure aus Rattenleberkernen während der Inkubation der Kerne in vitro. Biochem. Z. 332, 467–476.PubMedGoogle Scholar
  135. - 1962 a: An unstable ribonucleic acid in rat liver nuclei. Nature 194, 353–355.PubMedGoogle Scholar
  136. - 1962 b: End-turnover of rat liver soluble RNA in vivo. Biochim. Biophys. Acta 61, 499–505.Google Scholar
  137. - and V. R. Potter, 1960: Austritt von Ribonucleinsäure aus isolierten Rattenleber-Zellkernen während der Inkubation in vitro. Z. Naturforsch. 15 b, 453–460.Google Scholar
  138. - and R. Rott, 1961: Untersuchungen über die Vermehrung des Virus der Klassischen Geflügelpest. Die Synthese der virusspezifischen Ribonucleinsäure (RNS) in infizierten Gewebekulturen embryonaler Hühnerzellen. Z. Naturforsch. 16 b, 109–115.Google Scholar
  139. --1964: Behavior of virus-spezific activities in tissue cultures infected with myxoviruses after chemical changes of the viral ribonucleic acid. Virology 22, 169–176.PubMedGoogle Scholar
  140. -- – P. Hausen, H. Hausen, and W. Schäfer, 1962: Comparative studies of RNA and protein synthesis with a myxovirus and a small polyhedral virus. Cold Spring Harbor Symp. Quant. Biol. 27, 245–257.Google Scholar
  141. - J. H. Schneider, and V. R. Potter, 1958: Transfer of ribonucleic acid from nuclei to cytoplasm in vitro. Fed. Proc. 17, 306.Google Scholar
  142. Schramm, G., H. Grötsch, and W. Pollmann, 1962: Nicht-enzymatische Synthese von Polysacchariden, Nucleosiden und Nucleinsäuren und die Entstehung selbstvermehrungsfähiger Systeme. Angew. Chem. 74, 53–59.Google Scholar
  143. Schuster, H., 1960 a: Die Reaktionsweise der Desoxyribonucleinsäure mit salpetriger Säure. Z. Naturforsch. 15 b, 298–304.Google Scholar
  144. - 1960 b: The ribonucleic acids of viruses. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp.245–301.Google Scholar
  145. - 1961: The reaction of tobacco mosaic virus ribonucleic acid with hydroxylamine. J. Mol. Biol. 3, 447–457.PubMedGoogle Scholar
  146. - and G. Schramm, 1958: Bestimmung der biologisch wirksamen Einheit in der Ribonucleinsäure des Tabakmosaikvirus auf chemischem Wege. Z. Naturforsch. 13 b, 697–704.Google Scholar
  147. Shapiro, H. S., and E. Chargaff, 1957 a: Studies on the nucleotide arrangement in deoxyribonucleic acids I. The relationship between the production of pyrimidine nucleoside 3′,5′-diphosphates and specific features of nucleotide sequences. Biochim. Biophys. Acta 26, 596–608.PubMedGoogle Scholar
  148. --1957 b: Studies on the nucleotide arrangement in deoxyribonucleic acids II. Differential analysis of pyrimidine nucleotide distribution as a method of characterization. Biochim. Biophys. Acta 26 608–623.PubMedGoogle Scholar
  149. Shugar, D., 1960: Photochemistry of nucleic acids and their constituents. In: Chargaff and Davidson, The Nucleic Acids III, Academic Press: New York, pp.39–104.Google Scholar
  150. Sibatani, A., S. R. deKloet, V. G. Allfrey, and A. E. Mirsky, 1962: Isolation of a nuclear RNA fraction resembling DNA in its base composition. Proc. Nat. Acad. Sci., U. S. 48, 471–477.Google Scholar
  151. Singer, M. F., L. A. Heppel, and R. J. Hilmoe, 1960: Oligonucleotides as primers for polynucleotide phosphorylase. J. Biol. Chem. 235, 73–750.Google Scholar
  152. Sinsheimer, R. L., 1959: A single-stranded deoxyribonucleic acid from bacteriophage Ф X 174. J. Mol. Biol. 1, 43–53.Google Scholar
  153. Smellie, R. M. S., 1955: The metabolism of the nucleic acids. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp.393–434.Google Scholar
  154. Smith, J. D., 1955: The electrophoretic separation of nucleic acid components. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 267–284.Google Scholar
  155. Spyrides, G. J., and F. Lipmann, 1962: Polypeptide synthesis with sucrose gradient fractions of E. coli ribosomes. Proc. Nat. Acad. Sci., U. S. 48, 1977–1963.Google Scholar
  156. Staehelin, M., 1961 a: Studies on nucleotide sequences in ribonucleic acids I Separation of oligonucleotides on DEAE-cellulose. Biochim. Biophys. Acta 49, 11–19.Google Scholar
  157. Staehelin, M., 1961 b: Studies on nucleotide sequences in ribonucleic acids III. Amounts of oligonucleotides in pancreatic ribonuclease digests. Biochim. Biophys. Acta 49, 27–35.Google Scholar
  158. Stevens, A., 1960: Incorporation of the adenine ribonucleotide into RNA by cell fractions from E. coli B. Biochem. Biophys. Res. Comm. 3, 92–96.Google Scholar
  159. - 1961: Netformation of polyribonucleotides with base compositions analogous to deoxyribonucleic acid. J. Biol. Chem. 236, PC 43-PC 45.Google Scholar
  160. - 1963: Ribonucleic acids. - Biosynthesis and degradation. Ann. Rev. Biochem. 32, 15–42.PubMedGoogle Scholar
  161. Sueoka, N., J. Marmur, and P. Doty, 1959: Heterogeneity in deoxyribonucleic acids II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine content. Nature 183, 1429–1431.PubMedGoogle Scholar
  162. Takemura, S., 1958: Hydracinolysis of herring-sperm deoxyribonucleic acid. Biochim. Biophys. Acta 29, 447–448.PubMedGoogle Scholar
  163. Tamaoki, D. T., and G. C. Mueller, 1962: Synthesis of nuclear and cytoplasmic RNA of HeLa cells and the effect of actinomycin D. Biochem. Biophys. Res. Comm. 9, 451–454.PubMedGoogle Scholar
  164. Temin, H. M., 1963: The effect of actinomycin D on growth of Rous sarcoma virus in vitro. Virology 20, 577–582.PubMedGoogle Scholar
  165. Tener, G. M., H. G. Khorana, R. Markham, and E. H. Pol, 1958: Studies on polynucleotides II. The Synthesis and characterization of linear and cyclic thymidine oligonucleotides. J. Amer. Chem. Soc. 80, 6223–6230.Google Scholar
  166. Tissières, A., D. Schlessinger, and F. Gros, 1960: Amino acid incorporation into proteins by Escherichia coli ribosomes. Proc. Nat. Acad. Sci., U. S. 46, 1450–1463.Google Scholar
  167. Vendrely, R., 1955: The deoxyribonucleic acid content of the nucleus. In: Chargaff and Davidson, The Nucleic Acids II, Academic Press: New York, pp. 155–180.Google Scholar
  168. Verwoerd, D. W., and W. Zillig, 1963: A specific partial hydrolysis procedure for soluble RNA. Biochim. Biophys. Acta 68, 484–486.PubMedGoogle Scholar
  169. - H. Kohlhage, and W. Zillig, 1961: Specific partial hydrolysis of nucleic acids in nucleotide sequence studies. Nature 192, 1038–1040.PubMedGoogle Scholar
  170. - W. Zillig, and H. Kohlhage, 1963: Die Reaktion von Nucleinsäuren mit Hydroxylamin als Hilfsmittel für ihre definierte Partialhydrolyse. Z. physiol. Chem. 332, 184–203.Google Scholar
  171. Volkin, E., and L. Astrachan, 1956: Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2. Virology 2, 149–161.PubMedGoogle Scholar
  172. - and W. E. Cohn, 1953: On the structure of ribonucleic acids II. the products of ribonuclease action. J. Biol. Chem. 205, 767–782.PubMedGoogle Scholar
  173. Wahba, A. J., C. Basilio, J. F. Speyer, P. Lengyel, R. S. Miller, and S. Ochoa, 1962: Synthetic polynucleotides and the amino acid code VI. Proc. Nat. Acad. Sci., U. S. 48, 1683–1686.Google Scholar
  174. - R. S. Miller, C. Basilio, R. S. Gardner, P. Lengyel, and J. F. Speyer, 1963: Synthetic polynucleotides and the amino acid code IX. Proc. Nat. Acad. Sci, U. S. 49, 880–885.Google Scholar
  175. Warner, R. C., 1957: Studies on polynucleotides synthesized by polynucleotide phosphorylase III. Interaction and ultraviolet absorption. J. biol. Chem. 229, 711–724.PubMedGoogle Scholar
  176. Warner, J. R., P. M. Knopf, and A. Rich, 1963: A multiple ribosomal structure in protein synthesis. Proc. Nat. Acad. Sci., U. S. 49, 122–129.Google Scholar
  177. Watson, J. D., and F. H. C. Crick, 1953: Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171, 737–738.PubMedGoogle Scholar
  178. Weimann, G., and H. G. Khorana, 1962: Studies on polynucleotides XVII. On the mechanism of internucleotide bound synthesis by the carbodiimide method. J. Am. Chem. Soc. 84, 4329–4341.Google Scholar
  179. Weiss, S. B., 1960: Enzymatic incorporation of ribonucleoside-triphosphates into the interpolynucleotide linkages of ribonucleic acid. Proc. Nat. Acad. Sci., U. S. 46, 1020–1030.Google Scholar
  180. - and L. Gladstone, 1959: A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J. Amer. Chem. Soc. 81, 4118–4119.Google Scholar
  181. - and T. Nakamoto, 1961 a: Net synthesis of ribonucleic acid with a microbial enzyme requiring deoxyribonucleic acid and four ribonucleoside triphosphates. J. Biol. Chem. 236, PC 18-PC 20.Google Scholar
  182. -- 1961b: The enzymatic synthesis of RNA: nearest-neighbor base frequences. Proc. Nat. Acad. Sci., U. S. 47, 1400–1405.Google Scholar
  183. Weissmann, C., L. Simon, and S. Ochoa, 1963: Induction by an RNA phage of an enzyme catalyzing incorporation of ribonucleotides into ribonucleic acid. Proc. Nat. Acad. Sci., U. S. 49, 407–414.Google Scholar
  184. Wettstein, F. O., T. Staehelin, and H. Noll, 1963: Ribosomal aggregate engaged in protein synthesis: Characterization of the ergosome. Nature 197, 430–435.PubMedGoogle Scholar
  185. Wilkins, M. F. H., A. R. Stokes, and H. R. Wilson, 1953: Molecular structure of deoxypentose nucleic acid. Nature 171, 738–740.PubMedGoogle Scholar
  186. Wittmann, H. G., 1960: Comparison of the tryptic peptides of chemically induced and spontaneous mutants of tobacco mosaic virus. Virology 12, 609–612.PubMedGoogle Scholar
  187. - 1961: Die Entschlüsselung des genetischen Codes. Naturwiss. 48, 729–734.Google Scholar
  188. Wyatt, G. R., 1955: Separation of nucleic acid components by chromatography on filter paper. In: Chargaff and Davidson, The Nucleic Acids I, Academic Press: New York, pp. 243–265.Google Scholar
  189. Yankofsky, S. A., and S. Spiegelman, 1962 a: The identification of the ribosomal RNA cistron by sequence complementarity I. Specificity of complex formation. Proc. Nat. Acad. Sci., U. S. 48, 1069–1078.Google Scholar
  190. -- 1962 b: The identification of the ribosomal RNA cistron by sequence complementarity II. Saturation of and competitive interaction at the RNA cistron. Proc. Nat. Acad. Sci., U. S. 48, 1466–1472.Google Scholar
  191. -- 1963: Distinct cistrons for the two ribosomal RNA components. Proc. Nat. Acad. Sci., U. S. 49, 538–544.Google Scholar
  192. Yates, R. A., and A. B. Pardee, 1956: Control of pyrimidine biosynthesis in Escherichia coli by a feed-back-mechanism. J. Biol. Chem. 221, 757–770.PubMedGoogle Scholar
  193. Yoshikawa, H., and N. Sueoka, 1963 a: Sequential replication of bacillus subtilis chromosome I. Comparison of marker frequences in exponential and stationary growth phase. Proc. Nat. Acad. Sci., U. S. 49, 559–566.Google Scholar
  194. -- 1963 b: Sequential replication of bacillus subtilis chromosome II. Isotopic transfer experiments. Proc. Nat. Acad. Sci., U. S. 49, 806–813.Google Scholar
  195. Zalokar, M., 1959: Nuclear origin of ribonucleic acid. Nature 183, 1330.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1966

Authors and Affiliations

  • Christoph Scholtissek
    • 1
  1. 1.Max-Planck-Institut für VirusforschungTübingenGermany

Personalised recommendations