Advertisement

Spontaneous Breakdown of Symmetries

  • P. Surányi
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 3/1966)

Abstract

Today’s physics is characterized by the increasing importance of symmetry groups. Unfortunately most of these groups are connected only with an approximate symmetry. The generally accepted view about this problem is the following: the Hamiltonian of the system, H does not commute with the generators of the group /Gi, i = 1,...n/.

Keywords

Vector Meson Vacuum Expectation Goldstone Boson Mass Formula Approximate Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    M. Baker, S. Glashow, Phys. Rev. 128, 2462 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Th. Maris, V. Herscovitz, G. Jacob, Nuovo Cim. 34, 946 (1964)MathSciNetCrossRefGoogle Scholar
  5. Th. Maris, V. Herscovitz, G. Jacob, Nuovo Cim. 40, 214 (1965).MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    R. Arnowitt, S. Deser, Phys. Rev. 138, B712 (1965).MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    see ref.[3]Google Scholar
  8. 7.
    S. Glashow, Phys. Rev. 130, 2132 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 8.
    G. Marx, Phys. Rev. Lett. 14, 334 (1965)MathSciNetADSCrossRefGoogle Scholar
  10. G. Marx, Phys. Rev. 140, B.1068 (1965).MathSciNetADSCrossRefGoogle Scholar
  11. 9.
    J. Goldstone, Nuovo Cim. 19, 154 (1961).MathSciNetMATHCrossRefGoogle Scholar
  12. 10.
    J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 11.
    G. S. Guralnik, Phys. Rev. 136, B1404 (1964).MathSciNetADSCrossRefGoogle Scholar
  14. 12.
    G. S. Guralnik, Phys. Rev. 136, B1417 (1964).MathSciNetADSCrossRefGoogle Scholar
  15. 13.
    K. Nakamura, Progr. Theor. Phys. 33, 251 (1965)ADSMATHCrossRefGoogle Scholar
  16. K. Maki, Progr. Theor. Phys. 31, 698 (1964)MathSciNetADSCrossRefGoogle Scholar
  17. D. Ito, Y. Kurata, Progr. Theor. Phys. 31, 1174 (1964).ADSCrossRefGoogle Scholar
  18. 14.
    G. Domokos, P. Surânyi, Journal of Nuclear Physics (Moscow) 2, 503 (1965).Google Scholar
  19. 15.
    A. Bassetto, S. Ciccariello, Nuovo Cim. 40, 874 (1965).MathSciNetADSCrossRefGoogle Scholar
  20. 16.
    R. E. Curkosky, P. Tarjanne, Phys. Rev. 132, 1354 (1963).MathSciNetADSCrossRefGoogle Scholar
  21. 17.
    R. E. Cutkosky, Lecture presented at the Seminar on “High Energy Physics and Elementary Particles” Trieste, 1965.Google Scholar
  22. 18.
    C. Y. Wong, Phys. Rev. 138, B246 (1965).ADSCrossRefGoogle Scholar
  23. 19.
    K. Johnson, M. Baker, R. Willey, Phys. Rev. 136, B1111 (1964).MathSciNetADSCrossRefGoogle Scholar
  24. 20.
    M. Suzuki, Phys. Rev. 136, B769 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Wien 1966

Authors and Affiliations

  • P. Surányi
    • 1
  1. 1.Central Research Institute for PhysicsBudapestHungary

Personalised recommendations