Nonlinear Spinor Theory in Terms of Vacuum Expectation Values

  • H. Mitter
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 3/1966)


We shall consider in these lectures the system of equations for the vacuum expectation values of certain products of field operators (the n-point-functions) of a nonlinear, cubic spinor theory with the field equation
$$ % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa % aaleaacqaHXoqycqaHYoGyaeqaaOGaeqiYdK3aaSbaaSqaaiabek7a % IbqabaGccqGHRaWkcaWGwbWaaSbaaSqaaiabeg7aHjabek7aIjaacY % cacqqHspqOcqaH0oazaeqaaOGaeqiYdK3aa0baaSqaaiabfk9aHcqa % aiaacQcaaaGccqaHipqEdaWgaaWcbaGaeuO0dekabeaakiabeI8a5n % aaBaaaleaacqaH0oazaeqaaOGaeyypa0JaaGimaaaa!555C! D_{\alpha \beta } \psi _\beta + V_{\alpha \beta ,\Upsilon \delta } \psi _\Upsilon ^* \psi _\Upsilon \psi _\delta = 0 $$


Field Equation Light Cone Vacuum Expectation Canonical Theory Renormalizable Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Functional techniques have been discussed by various authors. For renormalizable theories see e.g. K. Symanzik, Hercegovi lectures 1962, where more literature can be found.Google Scholar
  2. 2.
    The correlation functions n have been used in field theory by W. Zimmermann, Nuovo Cim. 13, 503 (1959).Google Scholar
  3. 3.
    For literature see footnote 10) in the paper by G.Källén, Acta Physica Austriaca, Suppl. II., 1965. The representation was used also by J. Schwinger in a lecture at Harvard University 1954 (The Theory of Coupled Fields, unpublished lecture notes).Google Scholar
  4. 4.
    A. S. Wightman, Phys. Rev. 101, 860 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    W. Heisenberg, Nucl. Phys. 4, 532 (1957).MATHCrossRefGoogle Scholar
  6. 6.
    R. Haag, in: Les Problémes Mathématiques de la Théorie Quantique des Champs, Paris 1959.Google Scholar
  7. 7.
    K. Sekine, Nucl. Phys. 23, 245 (1961).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    I. M. Gel’fand, G. E. Schilow, Verallgemeinerte Funktionen I, Berlin 1960.Google Scholar
  9. 9.
    H. Mitter, Nuovo Cim. 32, 1789 (1964).MathSciNetCrossRefGoogle Scholar
  10. 10.
    K. Johnson, Nuovo Cim. 20, 773 (1961).CrossRefGoogle Scholar
  11. 11.
    H. Mitter, Nuovo Cim. 38, 1040 (1965).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Wien 1966

Authors and Affiliations

  • H. Mitter
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchenDeutschland

Personalised recommendations