Advertisement

Predicting the Susceptibility to Vestibular Sickness Under Conditions of Weightlessness

  • Ashton Graybiel
Conference paper

Abstract

The fact that Russian scientists considered the labyrinth played an etiological role in the symptoms Titov experienced during his orbital flight was justified not only on theoretical ground but also on the basis of Titov’s account. The fact that other Cosmonauts and Astronauts did not report similar symptoms can be explained on the basis of individual susceptibility. This poses a problem in predicting susceptibility, a problem made difficult by the inability to simulate zero G for long periods under terrestrial conditions. However, there is good evidence that susceptibility to symptoms in one type of gravitational - inertial force environment has predictive value for exposure to another type. This formed the point of departure in our studies to clarify the role of the vestibular organs in causing functional disturbances. We compared the symptomatology of persons with labyrinthine defects with normal subjects under a variety of environmental conditions. Our studies, though far from complete, indicate that persons with labyrinthine defects are relatively insusceptible to psychic insults and bizarre or nociceptive stimuli, which may cause symptoms in healthy subjects. Two explanations may be advanced. First, the mere presence of the vestibular organs contributes to the complexity of the integrative patterns in the central nervous system, the disturbance of which gives rise to symptoms of functional origin. Second, episodes of vestibular sickness lead to psychological and physiological conditioning which renders a person susceptible to the conditioned stimulus. This greatly complicates the task of predicting susceptibility to weightlessness, a task which will be even more difficult when not only test pilots but also scientists go aloft.

Keywords

Semicircular Canal Motion Sickness Space Flight National Aeronautic Force Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Prédiction de la sensibilité aux troubles vestibulaires dans les états de non-gravité. Le fait que les savants Russes aient considéré que le laby-rinthe jouait un rô1e étiologique dans les symptômes ressentis par Titov lors de son vol a été justifié non seulement du point de vue théorique mais aussi en se basant sur les propres affirmations de Titov. Le fait que d’autres cosmonautes et astronautes n’aient point signalé de symptomes semblables peut être expliqué par les différences de sensibilité suivant les individus. Ceci pose un problème pour la prédiction de la sensibilité, problème rendu difficile par l’impossibilité de simuler le G. zéro durant de longues périodes dans les conditions terrestres. Cependant, il est assez évident que la sensibilité aux symptômes dans un type de milieu de gravitation inerte a une valeur prophétique pour les expositions dans un autre type de milieu. Ceci a donné le point de départ de notre étude pour clarifier le rôle des organes vestibulaires en causant des troubles fonctionnels. Nous avons comparé les symptômes de personnes ayant des troubles labyrinthiques et des sujets normaux en les soumettant à des conditions de milieu différentes. Nos recherches, bien que loin d’être complètes, indiquent que les personnes ayant des troubles labyrinthiques sont relativement insensibles aux outrages psychiques ainsi qu’aux incitations motrices anormales ou nociceptives, qui peuvent provoquer des symptômes chez les sujets sains. Deux explications peuvent être avancées: d’abord, que la seule présence des organes vestibulaires contribue à la complexité des parties intégrantes du système nerveux central, dont le dérangement donne naissance à des symptômes d’origine fonctionnelle. Ensuite, des épisodes de maladie vestibulaire conduisent à un état psychologique et physiologique rendant une personne sensible au stimulus conditionné. Ceci complique grandement le travail de prédiction de la sensibilité en apesanteur, tâche qui sera plus difficile encore lorsque non seulement les pilotes d’essai mais aussi les savants voleront.

резЮме

Предсказания заболеваемости вестибулярного аппарата в усло-виях невесомости. Мнение русских исследователей, что ушной лабиринт играл этиологическую роль в симптомах, испытываемых Титовым во время орбитального полета, обосновано не только теоретически, но также и в отчете Титова. Можно объяснить инди-видуальной восприимчивостью других космонавтов и астронавтов умолчание о подобных симптомах в их отчетах. В связи с этим возникает вопрос предсказания восприимчивости (заболеваемости), представляющий значительные трудности, ввиду невозможности долгосрочно симулировать невесомость в наземных условиях. Имеются, однако, данные, доказывающие, что восприимчивость к симптомам в среде одного определенного типа инерционной силы тяготения может оказаться полезной при предсказании восприимчивости к симптомам в другого типа среде. Это и послужило отправным пунктом для наших работ по выяснению роли вестибулярных органов в случаях функциональных расстройств. Мы сравнили симптоматологию лиц, имеющих дефекты ушного лабиринта с таковой нормальных субъектов в различных условиях среды. Хотя наши исследования и далеки от полноты, но всеже нами показано, что лица с дефектами ушного лабиринта сравнительно нечувствительны к определенным психическим обидам и к эксцентричным или носицептивным стимулам, могущим вызвать симптомы у здоровых субъектов. Могут быть предложены два объяснения этих различий: 1/ само наличие вестибулярных органов благоприятствует сложности интегративных картин в центральной нервной системе, расстройство которых ведет к симптомам функционального происхождения. 2/ эпизоды вестибулярной болезни приводят к такому психологическому и физиологическому состоянию, которое вызывает восприимчивость данного лица к условному возбудителю. Этим сильно усложняется задача предсказания восприимчивости к состоянию невесомости, которая станет еще труднее, когда в полетах в космос будут участвовать не только пилоты-испытатели, но и научные работники.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. von Beckh, The Incidence of Motion Sickness during Exposures to the Weightless State. Astronautik 2, 217–224 (1961).Google Scholar
  2. 2.
    R. W. Lawton, Physiological Considerations Relevant to the Problem of Prolonged Weightlessness: A Review. Astronaut. Sci. Rev. 4, 1–16 (1962).Google Scholar
  3. 3.
    A. Graybiel, B. Clark, J. J. Zarriello, Observations on Human Subjects Living in a “Slow Rotation Room” for Periods of Two Days. Arch. Neurol. 3, 55–73 (1960).CrossRefGoogle Scholar
  4. 4.
    B. Clark, A. Graybiel, Human Performance during Adaptation to Stress in the Pensacola Slow Rotation Room. Aerospace Med. 32, 93–106 (1961).Google Scholar
  5. 5.
    A. Graybiel, F. E. Guedry, W. H. Johnson, R.S.Kennedy, Adaptation to Bizarre Stimulation of the Semicircular Canals as Indicated by the Oculogyral Illusion. Aerospace Med. 32, 321–327 (1961).Google Scholar
  6. 6.
    R. S. Kennedy, A. Graybiel, A Comparison of Susceptibility to Symptoms in the Slow Rotation Room (Canal Sickness) and Motion Sickness in Flight Personnel. Presented at the 1961 Meeting, Aerospace Medical Association, Chicago, 111.Google Scholar
  7. 7.
    F. E. Guedry, A.Graybiel, Compensatory Nystagmus Conditioned during Adaptation to Living in a Rotating Room. J. A.pl. Physiol. 17, 398–404 (1962).Google Scholar
  8. 8.
    R. S. Kennedy, A. Graybiel, Symptomatology during Prolonged Exposure in a Constantly Rotating Environment at a Velocity of One Revolution per Minute. Aerospace Med. 33, 817–825 (1962).Google Scholar
  9. 9.
    A. Graybiel, W. H. Johnson, A Comparison of the Symptomatology Experienced by Healthy Persons and Subjects with Loss of Labyrinthine Function when Exposed to Centripetal Force on a Counter-Rotating Room. Ann. Ötol., etc., St.Louis 72, 357–373 (1963).Google Scholar
  10. 10.
    F. E. Guedry, R. S. Kennedy, C. S. Harris, A. Graybiel, Human Performance during Two Weeks in a Room Rotating at 3 RPM. BuMed Project MR005. 13-6001 Subtask 1, Report No. 74 and NASA Order No. R-47. Pensacola, Fla.: Naval School of Aviation Medicine, 1962.Google Scholar
  11. 11.
    R. S. Kellogg, R. S.Kennedy, A. Graybiel, A Comparison of the Symptomatology between Deaf Subjects with Bilateral Labyrinthine Defects and Normal Subjects in Standardized Parabolic Flights. Joint Report. 6570th Aerospace Medical Research Laboratories and U.S. Naval School of Aviation Medicine. In preparation.Google Scholar
  12. 12.
    R. C. Woellner, A. Graybiel, Counter rolling of the Eyes and Its Dependence on the Magnitude of Gravitational orlnertial Force Acting Laterally on the Body. J. Appl. Physiol. 14, 632–634 (1959).Google Scholar
  13. 13.
    R.C. Woellner, and A. Graybiel, The Loss of Counter-Rolling of the Eyes in Three Persons Presumably without Functional Otolith Organs. Ann. Otol., etc., St. Louis 69, 1006–1012 (1960).Google Scholar
  14. 14.
    E.F.Miller, II, Counter rolling of the Human Eyes Produced by Head Tilt with Respect to Gravity. Acta Otolaryng., Stockh. 54, 479–501 (1962).Google Scholar
  15. E. F. Miller II, A. Graybiel, A Comparison of Ocular and Counter-A. Graybiel :Google Scholar
  16. 15.
    E. F. Miller II, A. Graybiel, A Comparison of Ocular and Counter-A. Graybiel :Google Scholar
  17. 16.
    A. Graybiel, Oculogravic Illusion. Arch. Ophthal. 48, 605–615 (1952).CrossRefGoogle Scholar
  18. 17.
    A. Graybiel, B. Clark, The Validity of the Oculogravic Illusion as a Specific Indicator of Otolith Function. BuMed Project MR005. 13-6001 Subtask 1, Report No. 67 and NASA Order No. R-37. Pensacola, Fla.: Naval School of Aviation Medicine, 1963.Google Scholar
  19. 18.
    F. E. Guedry, and E. K. Montague, Quantitative Evaluation of the Vestibular Coriolis Reaction. Aerospace Med. 32, 487–500 (1961).Google Scholar
  20. 19.
    W. H. Johnson, N. B. G. Taylor, The Importance of the Otoliths in Disorientation. DRML Report No. 22–38. Toronto, Canada: Defence Research Medical Laboratories, 1961.Google Scholar
  21. 20.
    R. S. Kennedy, A. Graybiel, Validity of Tests of Canal Sickness in Predicting Susceptibility to Airsickness and Seasickness. Aerospace Med. 33, 935–938 (1962).Google Scholar
  22. 21.
    L. R. Hammer, Aeronautical Systems Division Studies in Weightlessness: 1959–1960. WADD Technical Report 60-715. Wright-Patterson Air Force Base, Ohio: Aeronautical Systems Division, 1961.Google Scholar
  23. 22.
    J. C.Simons, and W.Kama, A Review of the Effects of Weightlessness on Selected Human Motions and Sensations. Project 7184. Wright- Patterson Air Force Base, Ohio: 6570th Aerospace Medical Research Laboratories, 1962.Google Scholar
  24. 23.
    A. Graybiel, Important Problems Arising out of Man’s Graviational- inertial Force Environment in Orbiting Satellites. In R. Fleisig, E.A.Hine, G. J.Clark (Eds.), Lunar Exploration and Spacecraft Systems. Proceedings of the Symposium on Lunar Flight, American Astronautical Society, New York, December 27, 1960. New York: Plenum Press, 1962.Google Scholar
  25. 24.
    J. E. Birren, M. B. Fisher, R. T. Stormont, Evaluation of Motion Sickness Questionnaire in Predicting Susceptibility to Seasickness. Nav. Med. Bull. 45, 629–634 (1945).Google Scholar
  26. 25.
    S. J. Alexander, M. Cotzin, C. J. Hill, E. A. Ricciuti, G. R. Wendt, Wesleyan University Studies of Motion Sickness: VI. Prediction of Sickness on a Vertical Accelerator by Means of a Motion Sickness History Questionnaire. J.Psychol. 20, 25–30 (1945).Google Scholar
  27. 26.
    J. E. Birren, M. B. Fisher, Susceptibility to Seasickness:A Questionnaire Approach. J. Appl. Psychol. 31, 288–297 (1947).CrossRefGoogle Scholar
  28. 27.
    A. A. van Egmond, J. J. Groen, G. De Wit, The Selection of Motion Sickness-susceptible Individuals, Internat. Rec. Med. 167, 651–660 (1954).Google Scholar
  29. 28.
    L. Preber, Vegetative Reactions in Caloric and Rotatory Tests. A Clinical Study with Special Reference to Motion Sickness. Acta Otolaryng., Stockh., Suppl. 144, 1–119 (1958).Google Scholar
  30. 29.
    S. J. Alexander, M. Cotzin, C. J. Hill, E. A. Ricciuti, G. R. Wendt, Wesleyan University Studies of Motion Sickness: IV. The Effects of Waves Containing Two Acceleration Levels upon Sickness. J. Psychol. 20, 9–18 (1945).Google Scholar
  31. Susceptibility to Vestibular SicknessGoogle Scholar
  32. 30.
    J. Park, The Correlation between Swing Sickness and Air Sickness and History of Motion Sickness. FPRC 485. Farnborough, England: Air Ministry, 1942.Google Scholar
  33. 31.
    G.W. Manning, and W.G.Stewart, The Effect of Body Position on the Incidence of Motion Sickness. J. Appl. Psychol. 619–628 (1949).Google Scholar
  34. 32.
    A. M. Fraser, G. W. Manning, Effect of Variation in Swing Radius and Arc on Incidence of Swing Sickness. J. Appl. Physiol. 2, 580–584 (1950).Google Scholar
  35. 33.
    G. Schubert, H. Kolder, Factor Analysis of Space Orientation. Riv.Med.Aero. 25, 64–77 (1962).Google Scholar
  36. 34.
    T.C.D. Whiteside, Motion Sickness. FPRC/Memo 156. Farnborough, England: Air Ministry, 1960.Google Scholar
  37. 35.
    R.H. Lowry, W. H. Johnson, “Pseudo Motion Sickness” Due to Sudden Negative “G”; its Relation to “Airsickness.11 J. Aviat. Med. 25, 103–106 (1954).Google Scholar
  38. 36.
    M. P. Lansberg, A Primer of Space Medicine. Amsterdam: Elsevier Publishing Company, 1960.Google Scholar
  39. 37.
    T. J. Powell, Acute Motion Sickness Induced by Angular Accelerations. FPRC 865. Farnborough, England: Air Ministry, 1954.Google Scholar
  40. 38.
    J. E. Steele, Motion Sickness and Spatial Perception. A Theoretical Study. ASD Technical Report 61-530. Wright-Patterson Air Force Base, Ohio: Aeronautical Systems Division, 1961.Google Scholar
  41. 39.
    J. G. Harris, Jr., Rorschach and MMPI Responses in Severe Airsickness. BuMed Project MR005. 13-5001 Subtask 1, Report No. 22. Pensacola, Fla.: Naval School of Aviation Medicine, 1963.Google Scholar
  42. 40.
    F. E. Guedry, A. Graybiel, W. E. Collins, Reduction of Nystagmus and Disorientation in Human Subjects. Aerospace Med. 33, 1356–1360 (1962).Google Scholar
  43. 41.
    W. J. McNally, E. A. Stuart, Physiology of the Labyrinth Reviewed in Relation to Seasickness and Other Forms of Motion Sickness. War Med., Chicago 683–771 (1942).Google Scholar
  44. 42.
    G. De Wit, Seasickness (Motion Sickness). A Labyrinthological Study. Acta Otolaryng., Stockh., Suppl. 108, 1–56 (1953).Google Scholar
  45. 43.
    D.B.Tyler, P. Bard, Motion Sickness, Physiol.Rev. 29, 311–369 (1949).Google Scholar
  46. 44.
    H. I. Chinn, P. K. Smith, Motion Sickness, Pharmacol. Rev. 7, 33–82 (1955).Google Scholar
  47. 45.
    G. Titov, and M. Caidin, I Am Eagle. Based on Interviews with W. Burchett, and A. Purdy, New York: Bobbs-Merrill Company, 1962.Google Scholar
  48. 46.
    O. G. Gazenko, V. J. Yazdovsky, Some Results of Physiological Reactions to Space Flight Conditions. Proceedings of the Xllth International Astronautical Congress, Washington, D.C., 1961, Vol. 11, pp. 639–646. New York - London: Academic Press Inc., Wien: Springer-Verlag, 1963.Google Scholar
  49. 47.
    V. V.Parin, O. G. Gazenko, Soviet Experiments Aimed at Investigating the Influence of the Space Flight Factors on the Organism of Animals and Man. Presented at Third International Space Science Symposium and Fifth COSPAR Plenary Meeting, Washington, D.C., 1962.Google Scholar
  50. A. Graybiel : Susceptibility to Vestibular SicknessGoogle Scholar
  51. 48.
    G. S. Titov, Report of Major Gherman S. Titov at Fifth Plenary Meeting of COSPAR on May 3, 1962. Third International Space Science Symposium and Fifth COSPAR Plenary Meeting, Washington, D. C., 1962.Google Scholar
  52. 49.
    G. Brownlow, Weightlessness Effects Worrying Soviets. Aviat.Week and Space Technol. 77, 38–39 (1962).Google Scholar
  53. 50.
    W. S. Augerson, and C. P. Laughlin, Physiological Responses of the Astronaut in the MR-3 flight. Proc. Con. on Results of the First U.S. Manned Suborbital Space Flight. National Aeronautics and Space Administration, National Institutes of Health, and National Academy of Science, June 6, 1961, pp. 45–50.Google Scholar
  54. 51.
    C. P. Laughlin, and W. S. Augerson, Physiological Responses of the Astronaut in the MR-4 Space Flight. In i Results of the Second U.S. Manned Suborbital Space Flight, July 21, 1961. National Aeronautics and Space Administration, Manned Spacecraft Center, pp. 15–21. Washington 25, D. C.: U.S. Government Printing Office.Google Scholar
  55. 52.
    C. P. Laughlin, et al., Physiological Responses of the Astronaut. In : Results of the First United States Manned Orbital Space Flight, February 20, 1962. National Aeronautics and Space Administration, Manned Spacecraft Center, pp. 93–103. Washington 25, D. C.: U. S. Government Printing Office.Google Scholar
  56. 53.
    E. P. McCutcheon, et al., Physiological Responses of the Astronaut. In: Results of the Second United States Manned Orbital Space Flight, May 24, 1962. NASA SP-6. National Aeronautics and Space Administration, Manned Spacecraft Center, pp. 54–62. Washington 25, D. C.: U. S. Government Printing Office.Google Scholar
  57. 54.
    J. P. Henry, et al., Effects of Weightlessness in Ballistic and Orbital Flight. A Progress Report. Aerospace Med. 33, 1056–1068 (1962).Google Scholar
  58. 55.
    J. H. Glenn, Pilot1 s Flight Report. In: Results of the First United States Manned Orbital Space Flight, February 20, 1962. National Aeronautics and Space Administration, Manned Spacecraft Center, pp. 119–136.Google Scholar
  59. 56.
    J. A. Roman, В. H. Warren, A. Graybiel, The Function of the Semicircular Canals during Weightlessness. Aerospace Med., in press.Google Scholar

Copyright information

© Springer-Verlag/Wien 1965

Authors and Affiliations

  • Ashton Graybiel
    • 1
  1. 1.U. S. Naval School of Aviation MedicineU. S. Naval Aviation Medical CenterPensacolaUSA

Personalised recommendations