Advertisement

Considerations about Programming Mass Adjustments

  • W. Thiele
Conference paper

Summary

Following this conference we will make a new adjustment of atomic masses. Because of the large amount of input data, we worked out now a new program for a IBM 7090 computer, that will handle automatically the division of the whole problem into subadjustments and that will also automatically prepare the data for these parts and then carry out these subadjustments themselves. The program will handle subadjustments with up to 200 masses, whereof up to 140 may be primary.

Keywords

Nuclear Reaction Atomic Mass Magnetic Tape Data Card Nuclear Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. König, Mathematical Details of the Mass Computation. Proc. Int. Conf. Nuclidic Mases, p. 39. Toronto: University of Toronto Press. 1960.Google Scholar
  2. 2.
    F. Everling, L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Adjustment of Relative Nuclidic Masses (I) A70. Nuclear Phys. 25, 177 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Adjustment of Relative Nuclidic Masses (II) 70 < A < 200. Nuclear Phys. 28, 1 (1961).CrossRefGoogle Scholar
  4. 4.
    A. H. Wapstra, Adjustment of Relative Nuclidic Masses (III) A ≥ 200. Nuclear Phys. 28, 29 (1961).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. König, J. H. E. Mattauch, and A. H. Wapstra, New Relative Nuclidic Masses. Nuclear Phys. 31, 1 (1962).CrossRefGoogle Scholar
  6. 6.
    A. Ralston and H. S. Wilf, Mathematical Methods for Digital Computers. New York-London: J. Wiley & Sons, 1960.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • W. Thiele
    • 1
  1. 1.Max-Planck-Institut für Chemie (Otto-Hahn-Institut)MainzGermany

Personalised recommendations