Some Atomic Masses in the Region from Gallium Through Molybdenum

  • R. R. Ries
  • R. A. Damerow
  • W. H. Johnson
Conference paper


In 1961, operational difficulties in the 16-inch double focusing mass spectrometer at the University of Minnesota became progressively more apparent, especially in measurements of heavier isotopes where maximum resolution is required. These difficulties necessitated the movement and reconstruction of the instrument. Some of the modifications made at that time will be discussed in this report. This improved spectrometer was then employed to measure a number of mass doublets in the region from gallium through xenon. Some of the atomic masses of the stable isotopes between A = 69 and A = 100 will be reported in this paper, while some masses between A = 100 and A = 130 will be reported in the following paper. These mass results are compared with other mass spectroscopic results and with nuclear reaction results wherever possible, and in addition, a partial mass table of radioactive atoms has also been calculated for this region by combining the stable mass results with available disintegration energies. Finally, one can then use these mass values to study the nuclear binding energy systematics in the region around the neutron shell closure at N = 50, as well as the proposed sub-shell at N = 40 and Z = 40.


Atomic Mass Mass Difference Neutron Number Pairing Energy Neutron Separation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Quisenberry, T. T. Scolman, and A. O. Nier, Phys. Rev. 102, 1071 (1956).ADSCrossRefGoogle Scholar
  2. 2.
    E. G. Johnson, and A. O. Nier, Phys. Rev. 91, 10 (1953).ADSMATHCrossRefGoogle Scholar
  3. 3.
    R. A. Demirkhanov, V. V. Dorokhov, and M. I. Dzkuya, J. Exptl. Theoret. Phys. (USSR) 40, 1572 (1961); Soviet Phys. JETP 13, 1104 (1961).Google Scholar
  4. 4.
    T. L. Collins, W. H. Johnson, and A. O. Nier, Phys. Rev. 94, 398 (1954).ADSCrossRefGoogle Scholar
  5. 5.
    R. C. Barber, R. L. Bishop, W. McLatchie, P. van Rookhuyzen, and H. E. Duckworth, Canad. Journ. Physics 41, 696 (1963).ADSCrossRefGoogle Scholar
  6. 6.
    B. B. Kinsey, and G. A. Bartholomew, Canad. Journ. Physics 31, 1051 (1953).ADSCrossRefGoogle Scholar
  7. 7.
    N. S. Wall, Phys. Rev. 96, 664 (1954).ADSCrossRefGoogle Scholar
  8. 8.
    M. H. Ramaswamy, and P. S. Jastram, Nuclear Phys. 19, 243 (1960).ADSCrossRefGoogle Scholar
  9. 9.
    J. I. Rhode, O. E. Johnson, and W. G. Smith, Phys. Rev. 129, 815 (1963).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Shafroth, Nuclear Phys. 28, 649 (1961).ADSGoogle Scholar
  11. 11.
    K. N. Geller, Nuclear Phys. 40, 177 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    N. R. Isenor R. R. C. Barber, and H. E. Duckworth, Canad. Journ. Physics 38, 819 (1960).ADSCrossRefGoogle Scholar
  13. 13.
    R. L. Preston, H. J. Martin, and M. B. Sampson, Phys. Rev. 121, 1741 (1961).ADSCrossRefGoogle Scholar
  14. 14.
    H. J. Martin, M. B. Sampson, and R. L. Preston, Phys. Rev. 125, 942 (1962).ADSCrossRefGoogle Scholar
  15. 15.
    M. G. Mayer, and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure. New York: J. Wiley and Sons, Inc. 1955.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • R. R. Ries
    • 1
  • R. A. Damerow
    • 1
  • W. H. Johnson
    • 1
  1. 1.University of MinnesotaMinneapolis 14USA

Personalised recommendations