Advertisement

Recommended Values of Calibration Energies

  • Jerry B. Marion
Conference paper

Abstract

Since the time of the last International Conference on Nuclidic Masses, there has been considerable activity in several different phases of precision beam energy measurements. First, several new absolute measurements have been made of the energies of standard calibration points, two of these using an altogether new technique. Second, the beams from tandem accelerators have been used to establish reference energies up to 14.6 MeV. Finally, detailed investigations have been made concerning the influence of energy loss effects and of the structure of target materials on the determination of resonance and threshold energies.

Keywords

Threshold Energy Calibration Point Absolute Measurement Calibration Energy Threshold Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Marion, Revs. Modern Phys. 33, 139 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    E. H. Beckner, R. L. Bramblett, G. C Phillips, and T. A. Eastwood, Phys. Rev. 123, 2100 (1961).ADSCrossRefGoogle Scholar
  3. 3.
    A. Rytz, H. H. Staub, and W. Zych, Helv. Phys. Acta 35, 341 (1962).Google Scholar
  4. 4.
    R. O. Bondelid and J. W. Butler, Phys. Rev. 130, 1078 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    B. R. Gasten, to be published.Google Scholar
  6. 6.
    R. G. Herb, S. C Snowden, and O. Sala, Phys. Rev. 75, 246 (1949).ADSCrossRefGoogle Scholar
  7. 7.
    S. E. Hunt, R. A. Pope, D. V. Freck, and W. W. Evans, Phys. Rev. 120, 1740 (1960).ADSCrossRefGoogle Scholar
  8. 8.
    H. H. Staub and H. Winkler, Nuclear Phys. 17, 271 (1960).ADSCrossRefGoogle Scholar
  9. 9.
    R. O. Bondelid and C. A. Kennedy, Phys. Rev. 115, 1601 (1959).ADSCrossRefGoogle Scholar
  10. 10.
    K. W. Jones, R. A. Douglas, M. T. McEllistrem, and H. T. Richards, Phys. Rev. 94, 947 (1954).ADSCrossRefGoogle Scholar
  11. 11.
    G. Murray, R. L. Graham, and J. S. Geiger, Bull. Amer. Phys. Soc. 7, 72 (1962), and private communication.Google Scholar
  12. 12.
    C. P. Browne, Paper No. 2 of this session.Google Scholar
  13. 13.
    H. H. Staub and H. Winkler, Helv. Phys. Acta 33, 526 (1960).Google Scholar
  14. 14.
    A. Rytz, Paper No. 1 of this session.Google Scholar
  15. 15.
    W. E. Shoupp, B. Jennings, and W. Jones, Phys. Rev. 76, 502 (1949).ADSCrossRefGoogle Scholar
  16. 16.
    W. J. Sturm and V. Johnson, Phys. Rev. 83, 542 (1951).ADSCrossRefGoogle Scholar
  17. 17.
    D. W. Palmer, J. G. Skofronick, D. G. Costello, A. L. Morsell, W. E. Kane, and R. G. Herb, Phys. Rev. 130, 1153 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    G. C. Phillips, J. Rickards, and B. E. Bonner, private communication.Google Scholar
  19. 19.
    J. D. Kington, J. K. Bair, H. O. Cohn, and H. B. Willard, Phys. Rev. 99, 1393 (1955).ADSCrossRefGoogle Scholar
  20. 20.
    J. B. Marion, T. W. Bonner, and C. F. Cook, Phys. Rev. 100, 91 (1955). The value for Al27(p, n) has been corrected and differs slightly from the published result.ADSCrossRefGoogle Scholar
  21. 21.
    R. A. Chapman and H. Bichsel, unpublished results (1957).Google Scholar
  22. 22.
    D. A. Bromley, A. J. Ferguson, H. E. Gove, J. A. Kuehner, A. E. Litherland, A. Almqvist, and R. Batchelor, Canad. Journ. Physics 37, 1514 (1959).ADSCrossRefGoogle Scholar
  23. 23.
    A. Rytz, H. Winkler, F. Zamboni, and W. Zych, Helv. Phys. Acta 34, 819 (1961).Google Scholar
  24. 24.
    J. M. Freeman, R. E. White, J. H. Montague, G. Murray, and W. E. Burcham, private communication of preliminary results.Google Scholar
  25. 25.
    K. Okano and K. Nishimura, Journ. Phys. Soc. Japan 18, 1563 (1963).ADSCrossRefGoogle Scholar
  26. 26.
    H. E. Gove, J. A. Kuehner, A. E. Litherland, E. Almqvist, D. A. Bromley, A. J. Ferguson, P. H. Rose, R. P. Bastide, N. Brooks, and R. J. Connor, Phys. Rev. Letters 1, 251 (1958).ADSCrossRefGoogle Scholar
  27. 27.
    A. Rytz, H. H. Staub, H. Winkler, and F. Zamboni, Nuclear Phys. 43, 229 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    J. W. Nelson, E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev. 129, 1723 (1963).ADSCrossRefGoogle Scholar
  29. 29.
    J. W. Butler and R. O. Bondelid, Phys. Rev. 121, 1770 (1961).ADSCrossRefGoogle Scholar
  30. 30.
    L. Meyer-Schützmeister, and S. S. Hanna, Phys. Rev. 108, 1506 (1957).ADSCrossRefGoogle Scholar
  31. 31.
    W. E. Meyerhof and L. F. Chase, Jr., Phys. Rev. 111, 1348 (1958).ADSCrossRefGoogle Scholar
  32. 32.
    R. M. Williamson, T. Katman, and B. S. Burton, Phys. Rev. 117, 1325 (1960).ADSCrossRefGoogle Scholar
  33. 33.
    K. L. Dunning, J. W. Butler, and R. O. Bondelid, Phys. Rev. 110, 1076 (1958).ADSCrossRefGoogle Scholar
  34. 34.
    A. Rytz, H. H. Staub, H. Winkler, and F. Zamboni, Nuclear Phys. 43, 229 (1963).ADSCrossRefGoogle Scholar
  35. 35.
    H. Bichsel and T. W. Bonner, Phys. Rev. 108, 1025 (1957).ADSCrossRefGoogle Scholar
  36. 36.
    M. K. Mehta, W. E. Hunt, H. S. Plendl, and R. H. Davis, Bull. Amer. Phys. Soc. 6, 226 (1961).Google Scholar
  37. 37.
    J. W. Nelson, E. B. Carter, G. E. Mitchell, and R. H. Davis, Phys. Rev. 129, 1723 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • Jerry B. Marion
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations