Absolute Energy Standards for Van de Graaff Accelerators

  • G. C. Phillips
Conference paper


The Van de Graaff accelerator provides a useful instrument for the determination of nuclear reaction Q-values and thus for the measurement of nuclidic mass-differences. This unique accelerator is usually operated so as to have beam energy-homogeneity of the order of one part in several thousand. To use particle beams of such precisely defined energy to determine nuclidic mass-differences however, it is necessary to ascertain, in an absolute manner, the energy of the particles. This paper will present the work done at Rice University on establishing such an energy standard. All of the Rice work has been on simple energy standards. It is our view that the calibration measurement of energy should be a simple one; they should all be laboratory standards that can be easily reproduced anywhere with a minimum of effort. Nevertheless, target preparation techniques are very important and it is unfortunate that space will not allow this subject to be discussed here. Professor Herb has discussed some aspects of this problem in a preceeding paper.


Magnetic Spectrometer Energy Standard Tandem Accelerator Proton Resonance Frequency Graaff Accelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. B. Lewis, and B. V. Bowden, Proc. Roy. Soc. (London) A 145, 235 (1934).ADSGoogle Scholar
  2. 2.
    H. B. Willard, and W. M. Preston, Phys. Rev. 81, 480 (1951).ADSCrossRefGoogle Scholar
  3. 3.
    R. O. Bondelid, and C. A. Kennedy, Phys. Rev. 115, 1601 (1959).ADSCrossRefGoogle Scholar
  4. 4.
    J. D. Cockcroft, J. Sci. Instr. 10, 71 (1933).ADSCrossRefGoogle Scholar
  5. Buechner, van de Graaff, Strait, Stergiopoulos, and Sperduto, Bull. Amer. Phys. Soc. 23, 30 (1948).Google Scholar
  6. 5.
    E. Klema, and G. C. Phillips, Phys. Rev. 86, 951 (1952).ADSCrossRefGoogle Scholar
  7. — K. Famularo, and G. C. Phillips, Phys. Rev. 91, 1195 (1953).ADSCrossRefGoogle Scholar
  8. — C. R. Gossett, G. C Phillips, and J. T. Eisinger, Phys. Rev. 98, 724 (1955).ADSCrossRefGoogle Scholar
  9. — T. E. Young, G. C. Phillips, and R. R. Spencer, Phys. Rev. 108, 72 (1957).ADSCrossRefGoogle Scholar
  10. 6.
    D. R. Hartree, Proc. Cambridge Phil. Soc. 21, 746 (1923).Google Scholar
  11. 7.
    K. Famularo, and G. C. Phillips, Phys. Rev. 91, 1195 (1953).ADSCrossRefGoogle Scholar
  12. 8.
    J. B. Marion, and T. W. Bonner, in Fast Neutron Physics, J. B. Marion, and J. L. Fowler, ed., Part II, p. 1865. New York: Interscience. 1963.Google Scholar
  13. 9.
    J. Rickards, B. E. Bonner, and G. C. Phillips, Bull. Amer. Phys. Soc. 8, 114 (1963).Google Scholar
  14. 10.
    E. H. Beckner, R. L. Bramblett, G. C Phillips, and T. A. Eastwood, Phys. Rev. 123, 2100 (1961).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • G. C. Phillips
    • 1
  1. 1.Department of PhysicsRice UniversityHoustonUSA

Personalised recommendations