Advertisement

Nuclear Resonance Energies

  • H. H. Staub
Conference paper

Abstract

In the determination of mass values or rather mass differences through the Q-value of a nuclear reaction, two energies of particles, the energy of the primary particle and the energy of the reaction product must be determined. For intensity reasons doubly focussing sector magnets are usually used for both measurements. This type of spectrometer must be calibrated since it is impossible to compute the exact shape of particle orbits. Moreover ordinary and so called “differential” hysteresis affect the performance of the spectrometer and make it necessary that a rather closely spaced set of accurately known calibration energies is available. For calibration energies, resonance energies of isolated single narrow resonances whose width is of the order of the desired accuracy and threshold energies are suitable. Resonance energies are therefore mostly those of particle capture reactions with subsequent γ de-excitation. Threshold energies are commonly those of (p, n) reactions.

Keywords

Energy Loss Resonance Energy Radial Field Particle Orbit High Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Winkler, and W. Zych, Helv. Phys. Acta 34, 449 (1961).Google Scholar
  2. 2.
    A. Rytz, H. H. Staub, and H. Winkler, Helv. Phys. Acta 34, 960 (1961).Google Scholar
  3. 3.
    R. O. Bondelid, and J. W. Butler, N. R. L. Report 5897 (1963).Google Scholar
  4. 4.
    B. R. Gasten, Bull. Aner. Phys. Soc. 7, 549 (1962).Google Scholar
  5. 5.
    W. E. Shoupp, B. Jennings, and W. Jones, Phys. Rev. 76, 502 (1949).ADSCrossRefGoogle Scholar
  6. 6.
    R. O. Bondelid, and J. W. Butler, Phys. Rev. 130, 1078 (1963).ADSCrossRefGoogle Scholar
  7. 7.
    H. H. Staub, and H. Winkler, Helv. Phys. Acta 33, 526 (1960).Google Scholar
  8. 8.
    A. Rytz, H. H. Staub, H. Winkler, and F. Zamboni, Nuclear Phys. 43, 229 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    S. E. Hunt, R. A. Pope, D. V. Freck, and W. W. Evans, Phys. Rev. 120, 1740 (1960).ADSCrossRefGoogle Scholar
  10. 10.
    R. O. Bondelid, and C. A. Kennedy, Phys. Rev. 115, 1601 (1959).ADSCrossRefGoogle Scholar
  11. 11.
    E. H. Beckner, R. L. Bramblett, G. C. Philips, and T. A. Eastwood, Phys. Rev. 123, 2100 (1961).ADSCrossRefGoogle Scholar
  12. 12.
    A. Rytz, H. H. Staub, H. Winkler, and W. Zych, Helv. Phys. Acta 35, 341 (1962).Google Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • H. H. Staub
    • 1
  1. 1.Physik-Institut der Universität ZürichZürichSwitzerland

Personalised recommendations