Advertisement

Precision Measurements on the Muon, Muonium, Positronium, and Helium as Related to the Fundamental Atomic Constants

  • J. M. Bailey
  • V. W. Hughes

Abstract

Quantum electrodynamics is our best understood and most precisely verified theory. Both the electron and the muon appear to be Dirac particles with conventional electrodynamic coupling. Electrons and muons partake in no strong interactions but they do have weak interactions. Precise measurements on these particles, both when free and when in the bound hydrogen-like systems of muonium (μ+ e) and positronium (e+ e) have been vital to the establishment and verification of the theory of quantum electrodynamics. Such measurements are also useful for obtaining information about certain of the fundamental atomic constants. For the interpretation of these measurements only the electromagnetic interactions need be considered because the weak interactions are small by comparison. The effects of strongly interacting particles on higher order radiative corrections become important1 only to an accuracy well beyond present experimental precision. In contrast, the effect of strong interactions on the hydrogen atom, which contains a proton, is considerably greater than the uncertainties of present-day experiments.

Keywords

Quantum Electrodynamic Hyperfine Structure Dirac Particle Decay Positron Muon Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Durand, Phys. Rev. 128, 441 (1962).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963).ADSCrossRefGoogle Scholar
  3. 3.
    W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 86, 1014 (1952).ADSCrossRefGoogle Scholar
  4. — S. Triebwasser, E. S. Dayhoff, and W. E. Lamb, Jr., Phys. Rev. 89, 98 (1953).ADSCrossRefGoogle Scholar
  5. — For latest theoretical work see A. J. Layzer, J. Math. Phys. 2, 308 (1961).ADSCrossRefGoogle Scholar
  6. 4.
    R. Weinstein, M. Deutsch, and S. C. Brown, Phys. Rev. 94, 758 (1954).Google Scholar
  7. — V. W. Hughes, S. Marder, and C. S. Wu, Phys. Rev. 106, 934 (1957).ADSCrossRefGoogle Scholar
  8. 5.
    G. Charpak, F. J. M. Farley, R. L. Garwin, T. Muller, J. C. Sens, and A. Zichichi, Phys. Letters 1, 16 (1962).ADSCrossRefGoogle Scholar
  9. 6.
    K. W. Chen, A. A. Cone, J. R. Dunning, Jr., S. G. F. Frank, N. F. Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev. Letters 11, 561 (1963).ADSCrossRefGoogle Scholar
  10. 7.
    G. E. Masek, T. E. Ewart, J. P. Toutonghi, and R. W. Williams, Phys. Rev. Letters 10, 35 (1963).ADSCrossRefGoogle Scholar
  11. 8.
    A. Alberigi-Quaranta, M. de Pretis, G. Marini, A. Odian, G. Stoppin and L. Tau, Phys. Rev. Letters 9, 226 (1962).ADSCrossRefGoogle Scholar
  12. 9.
    V. W. Hughes, D. W. McColm, K. O. H. Ziock, and R. Prepost, Phys. Rev. Letters, 63 (1960).Google Scholar
  13. Ȕ P. K. Kabir, Nuov. Cim. 22, 429 (1961).CrossRefGoogle Scholar
  14. 10.
    This is one of two possible viewpoints; for discussion (with obsolete numerical values) see G. Shapiro and L. M. Lederman, Phys. Rev. 125, 1022 (1962).ADSCrossRefGoogle Scholar
  15. 11.
    G. McD. Bingham, Nuov. Cim. 27, 1352 (1963).CrossRefGoogle Scholar
  16. — D. P. Hutchinson, J. Menes, G. Shapiro, and A. M. Patlach, Phys. Rev. 131, 1351, 1362 (1963).ADSCrossRefGoogle Scholar
  17. 12.
    F. J. M. Farley, T. Massam, T. Muller, and A. Zichichi, 1962 International Conference on High-Energy Physics at CERN, p. 415.Google Scholar
  18. — S. L. Meyer, E. W. Anderson, E. Bleser, L. M. Lederman, J. L. Rosen, J. Rothberg, and I-T. Wang, Phys. Rev. 132, 2693 (1963).ADSCrossRefGoogle Scholar
  19. 13.
    E. S. Dayhoff, S. Triebwasser, and W. E. Lamb, Jr., Phys. Rev. 89, 106 (1953).ADSCrossRefGoogle Scholar
  20. 14.
    D. W. Zwanziger, Bull. Amer. Phys. Soc. 6, 514 (1961).Google Scholar
  21. — A. J. Layzer, Bull. Amer. Phys. Soc. 6, 514 (1961). Private communication from D. W. Zwanziger.Google Scholar
  22. 15.
    J. W. M. Du Mond, Ann. Phys. 7, 365 (1959).ADSCrossRefGoogle Scholar
  23. 16.
    The value given for μep is an average of the three best published results: S. H. Koenig, A. G. Prodell, and P. Kusch, Phys. Rev. 88, 191 (1952).ADSCrossRefGoogle Scholar
  24. — E. R. Beringer and M. A. Heald, Phys. Rev. 95, 1474 (1954).ADSCrossRefGoogle Scholar
  25. — J. S. Geiger, V. W. Hughes, and H. E. Radford, Phys. Rev. 105, 183 (1957).ADSCrossRefGoogle Scholar
  26. 17.
    R. Prepost, J. M. Bailey, W. E. Cleland, M. Eckhause, and V. W. Hughes, Bull. Amer. Phys. Soc. 9, 81 (1964).Google Scholar
  27. 18.
    K. O. H. Ziock, V. W. Hughes, R. Prepost, J. M. Bailey, and W. E. Cleland, Phys. Rev. Letters 8, 103 (1962).ADSCrossRefGoogle Scholar
  28. 19.
    F. M. Pipkin and R. H. Lambert, Phys. Rev. 127, 787 (1962).ADSCrossRefGoogle Scholar
  29. — For theoretical work on density-shifts, see G. A. Clarke, J. Chem. Phys. 36, 2211 (1962).ADSCrossRefGoogle Scholar
  30. 20.
    R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).ADSMATHCrossRefGoogle Scholar
  31. 21.
    E. D. Theriot, H. G. Robinson, K. O. H. Ziock, and V. W. Hughes, private communication.Google Scholar
  32. 22.
    C. L. Pekeris, B. Schiff, and H. Lipson, Phys. Rev. 126, 1057 (1962).ADSCrossRefGoogle Scholar
  33. 23.
    H. M. Schwartz, Phys. Rev. 130, 1029 (1963).ADSMATHCrossRefGoogle Scholar
  34. 24.
    J. Lifsitz and R. H. Sands, Bull. Amer. Phys. Soc. 6, 424 (1961).Google Scholar
  35. 25.
    F. M. J. Pichanick, R. D. Swift, and V. W. Hughes, Bull. Amer. Phys. Soc. 9, 90 (1964).Google Scholar
  36. 26.
    C. K. Iddings and P. M. Platzman, Phys. Rev. 113, 192 (1959); 115, 919 (1959).ADSCrossRefGoogle Scholar
  37. 27.
    S. B. Crampton, D. Kleppner, and N. F. Ramsey, Phys. Rev. Letters 11, 338 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • J. M. Bailey
    • 1
  • V. W. Hughes
    • 1
  1. 1.Gibbs Physics LaboratoryYale UniversityNew HavenUSA

Personalised recommendations