The Proton Gyromagnetic Ratio as a Nuclear Standard

  • Horst A. Capptuller
Conference paper


In addition to the well-known properties of mass m, charge e and intrinsic angular-momentum p or spin I, the atomic nucleus possesses in general a magnetic moment μ involved by circulating electric currents. A spinning spherical shell with charge and mass uniformly distributed over its surface has a magnetic moment \( \mu = \frac{e}{{2m}}p \). The nucleus does not conform accurately to this model but the nuclear resonance phenomenon provides one of the experimental methods for learning the relation between the nuclear magnetic moment and the angular momentum. This relation is called the gyromagnetic ratio γ which differs only in magnitude from the absolute theoretical value due to a non-uniform distribution of charge. It is customary to write \( \mu = g\frac{e}{{2m}}p \), where the Landé-factor g depends on the effectiive shape of the nucleus.


Gyromagnetic Ratio Effective Width Specific Charge Precession Frequency Stray Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. M. Dumond and E. R. Cohen, Rev. Modern Phys. 20, 82 (1948); 25, 691 (1953).ADSCrossRefGoogle Scholar
  2. 2.
    J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951).ADSCrossRefGoogle Scholar
  3. 3.
    P. L. Bender and R. L. Driscoll 5, Free Precession Determination of the Proton Gyromagnetic Ratio. Trans. IRE Instr. (Dec. 1958), 176.Google Scholar
  4. 4.
    B. M. Yanovskii, N. V. Studentsov, and T. N. Tichomirova, Izmeri-telnaja Technika 2, 39 (1959).Google Scholar
  5. 5.
    P. Vigoureux, Proc. Roy. Soc. A, 270, 72–89 (1962).ADSCrossRefGoogle Scholar
  6. 6.
    B. M. Yanovskii and N. V. Studentsov, Izmeritelnaja Technika 6, 28–31 (1962).Google Scholar
  7. 7.
    W. Wilhelmy, Eine Neubestimmung des gyromagnetischen Verhältnisses des Protons. Ann. Phys. 19, 329 (1957).CrossRefGoogle Scholar
  8. 8.
    Cotton, L’éclairage électrique 24, 257 (1900).Google Scholar
  9. 9.
    G. H. Briggs and A. F. A. Harper, J. Sci. Instr. 13, 119 (1936).ADSCrossRefGoogle Scholar
  10. 10.
    H. A. Thomas, R. L. Driscoll and J. A. Hipple „Measurement of the Proton Moment in Absolute Units. Phys. Rev. 78, 787 (1950).ADSCrossRefGoogle Scholar
  11. 11.
    G. K. Yagola, V. I. Zingerman, and V. N. Sepetyi, Izmeritelnaja Technika 5, 24–29 (1962).Google Scholar
  12. 12.
    H. Capptuller, Ein Differenzverfahren zur absoluten Bestimmung der Kraftflußdichte im Luftspalt von Laboratoriumsmagneten. Z. Instr.-Kde. 69, 133–140 (1961).Google Scholar
  13. 13.
    H. Capptuller, Bestimmung des gyromagnetischen Verhältnisses des Protons. Z. Instr.-Kde. 69, 191–198 (1961).Google Scholar
  14. 14.
    Comité Consultatif d’Electricité 9e Session Oct. 1961, S. 14 und S. 85–89. Paris: Gauthier-Villars & Cie.Google Scholar
  15. 15.
    Comité Consultatif d’Electricité 10e Session May 1963 (to be published).Google Scholar
  16. 16.
    N. F. Ramsey, Magnetic Shielding of Nuclei in Molecules. Phys. Rev. 78, 699 (1950).ADSMATHCrossRefGoogle Scholar
  17. 17.
    H. A. Thomas, The Diamagnetic Correction for Protons in Water and Mineral Oil. Phys. Rev. 80, 901 (1950).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • Horst A. Capptuller
    • 1
  1. 1.Physikalisch-Technische Bundesanstalt BraunschweigWest Germany

Personalised recommendations