Quantum Field Theory and Generalized Functions

  • F. Rohrlich
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 4/1967)


In the following lectures I wish to review the present state of quantum field theory following the approach usually called “asymptotic quantum field theory”. Since certain mathematical developments, especially from the theory of generalized functions, will be an important prerequisit, I shall proceed as follows. In order to avoid interrupting the development of the physical theory by mathematical asides, I shall first present several primarily mathematical topics which will then be used in the second part of these lectures for the development of the physical theory. The outline is therefore as follows:


Operator Derivative Free Field Mass Shell Perturbation Expansion Convolution Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (in Chronological Order)

  1. 1.
    N. N. Bogoljubov, Izv. Akad. Nauk SSSR,Ser. Fiz. 19, 237 (1955).Google Scholar
  2. 2.
    H. Lehmann, R. Symanzik and W. Zimmermann, Nuovo Cimento 1, 205 and 2, 425 (1955); 6, 319 (1957).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    V. Glaser, H. Lehmann and W. Zimmermann, Nuovo Cim. 6, 1122 (1957).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    N. N. Bogoljubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New York 1959.Google Scholar
  5. 5.
    M. Muraskin and K. Nishijima, Phys. Rev. 122, 331 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    V. Ya. Fainberg, Soviet Physics, JETP, 13, 1237 (1961).MATHGoogle Scholar
  7. 7.
    R. E. Pugh, Ann. Phys. 23, 335 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    F. Rohrlich, J. Math. Phys. 5, 324 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    R. E. Pugh, Ann. Phys. 30, 422 (1964).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    V. Ya. Fainberg, Z. Eksp. i Teor. Fiz. 47, 2285 (1964) - Soviet Physics JETP, 20, 1529 (1965).MathSciNetGoogle Scholar
  11. 11.
    F. Rohrlich and J. C. Stcddart, J. Math. Phys. 6, 495 (1965).ADSMATHCrossRefGoogle Scholar
  12. 12.
    B. V. Medvedev, Z. Eksp. i Teor. Fiz. 48,1479 (1965)- Sov. Phys. JETP, 21, 989 (1965).ADSGoogle Scholar
  13. 13.
    R. E. Pugh, J. Math. Phys. 6, 740 (1965).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    F. Rohrlich and F. Strocchi, Phys. Rev. 139, B476 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    R. E. Pugh, J. Math. Phys. 7, 379 (1966).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    F. Rohrlich and M. Wilner, J. Math. Phys. 7, 482 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    T. W. Chen, F. Rohrlich and M. Wilner, J. Math. Phys. 7, 1365 (1966).ADSMATHCrossRefGoogle Scholar
  18. 18.
    F. Rohrlich and J. G. Wray, J. Math. Phys. 7, 1697 (1966).ADSMATHCrossRefGoogle Scholar
  19. 19.
    T. W. Chen, Nuovo Cim. 45, A533 (1966).ADSCrossRefGoogle Scholar
  20. 20.
    F. Rohrlich, “Asymptotic Quantum Field Theory”, p. 295 in Perspectives in Modern Physics, ed. By R. E. Marshak, Interscience - Wiley, 1966.Google Scholar
  21. 21.
    T. W. Chen, Ann. Phys. (in press).Google Scholar
  22. 22.
    V. Gorgé and F. Rohrlich, J. Math. Phys. (in press).Google Scholar
  23. 23.
    J. G. Wray, Ph. D. Thesis, Syracuse University (1967)Google Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • F. Rohrlich
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations