Advertisement

Algebraic Formulation of Dynamical Problems

  • P. Budini
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 4/1967)

Abstract

The extension of Wigner supermultiplet theory of isospin to unitary symmetry has led to the consideration of SU(6) as the fundamental symmetry group for hadron physics [1]. By this extension, such a phenomenon as the nuclear anomalous magnetic moment found simple and elegant explanation, despite the expectation that these phenomena could only be understood in the frame of orthodox dynamical theory. This success encouraged the thought that a further extension of the symmetry to include the Poincaré group would have given the basis for a fundamental dynamical theory of strong interactions [2].

Keywords

Irreducible Representation Symmetric Space Commutation Relation Lorentz Group Symmetry Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gürsey and L. Radicati, Phys. Rev. Lett. 13, 299 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Delbourgo, A. Salam and J. Strathdee, Proc. Roy. Soc. A 284, 146 (1965); M. A. Bég and A. Pais, Phys. Rev. Lett. 14, 404 (1965); L. Michel and B. Sakita, Ann. Inst. Henri Poincaré 2, 167 (1965);P. Budini and C. Fronsdal, Phys. Rev. Lett. 14, 968 (1965).Google Scholar
  3. 3.
    L. O’Raifeartaigh, Phys. Rev. Lett. 14, 332 and 575 (1965); Phys. Rev. 139, 1052 (1965).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. O. Barut, Phys. Rev. 135, B 839 (1964); A. O. Barut and A. Böhm, Phys. Rev. 139, 1107 (1965).Google Scholar
  5. 5.
    Y. Dothan, M. Gell-Mann and Y. Ne’eman, Phys. Lett. 17, 148 (1965).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. M. Jauch and E. L. Hill, Phys. Rev. 57, 641 (1940). 144MathSciNetGoogle Scholar
  7. 7.
    R. C. Hwa and J. Nuyts, Phys. Rev. 145, 1188 (1966).Google Scholar
  8. 8.
    G. Bisiacchi and P. Budini, Nuovo Cim. 44, 418 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    G. in Bisiacchi and T. Chersi, Thesis,to be published Nuovo Cim.Google Scholar
  10. 10.
    W. Pauli, Z. Phys. 36, 336 (1926); V. Fock, Z. Phys. 98, 145 (1935); V. Bargmann, Z. Phys. 99, 576 (1936).CrossRefGoogle Scholar
  11. 11.
    A. O. Barut, P. Budini and C. Fronsdal, Proc. Roy. Soc. A 291, 106 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    P. Budini, Nuovo Cim. 44, 363 (1965).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    C. Fronsdal, Preprint UCLA, THR 18 (1966).Google Scholar
  14. 14.
    A. M. Yaglom, Zh. Eksperim. i Teor. Fiz. 18, 1105 (1948).MathSciNetGoogle Scholar
  15. 15.
    J. Z. K. Lubanski, Physica 9, 310 Naturf. 20a, 737 (1965). (1942); L. CastellGoogle Scholar
  16. 16.
    E. Majorana, Nuovo Cim. 9, 335 (1932).CrossRefGoogle Scholar
  17. 17.
    Y. Nambu, Preprint, EFINS 66–65.Google Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • P. Budini
    • 1
  1. 1.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations