Problems and Potentialities of Space Rendezvous

  • John C. Houbolt
Conference paper


Problems and Potentialities of Space Rendezvous. The paper gives an analysis of rendezvous operations in space, as in the soft joining of a ferry vehicle to an orbiting space station or other target, and explores the potentiality of rendezvous in accomplishing certain space missions.

The significant phases of rendezvous are examined in a sequential sense, in which problems pertinent to each phase are assessed and results of recent research studies are given. Discussed are such aspects as appropriate injection or launch trajectories for rendezvous, suitable launch times, use of midcourse guidance logic, and manned and automatic terminal guidance schemes. Attention is also given to the use of special purpose orbits, such as parking orbits, to corrective maneuvers, to fuel consumption and penalties, and to the use of different sensors (electronic, optical, etc.) in performing the various phases. The paper concludes with an examination of the mission capabilities and benefits that may be brought about through use of rendezvous.


Angular Rate Target Orbit Parking Orbit Rendezvous Problem Lunar Land 


Probleme und Möglichkeiten des Zusammentreffens im Raum. Die vorliegende Arbeit bringt eine Untersuchung derartiger Operationen; die kennzeichnenden Phasen werden behandelt und Resultate gegenwärtiger Untersuchungen angegeben. Untersucht werden unter anderem Startbahnen, geeignete Startzeit, Kurskorrekturen, bemannte und automatische Lenkung. Auch spezielle Bahnen, wie Parkbahnen für Korrekturmanöver, zum Auftanken, für Unglücksfälle usw., werden behandelt.


Problèmes et utilisations des rendez-vous dans l’espace. On donne une analyse des opérations de rendez-vous dans l’espace, comme la rencontre d’un véhicule de ravitaillement avec une station spatiale ou tout autre objectif et l’on examine les possibilités offertes par cette technique dans l’accomplissement de certaines missions spatiales.

Les phases significatives d’un rendez-vous sont examinées dans leur ordre naturel. On examine les problèmes posés à chaque phase et l’on donne les résultats des recherche récentes à leur sujet. L’auteur traite de questions telles que celle de la mise en orbite et des trajectoires de départ qui conviennent le mieux au rendez-vous, de l’heure du lancement, de l’emploi d’une correction à mi-course, des systèmes de guidage terminaux pilotés ou automatiques, ainsi que des problèmes posés par l’accostage. Sont également examinés l’emploi d’orbites spéciaux pour des buts particuliers, tels que des orbites de stationnement, la correction des maneuvres, le pourcentage de propergol consommé et ses conséquences, ainsi que l’emploi des différents dispositifs (électronique, optique, etc.) employés pour l’accomplissement de chaque phase. L’auteur termine par l’examen des bienfaits et des nouvelles possibilités que l’utilisation des rendez-vous apportera dans les missions spatiales.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Houbolt, Considerations of the Rendezvous Problems for Space Vehicles. Presented to the SAE National Aeronautical Meeting, New York, N.Y., April 5–8, 1960.CrossRefGoogle Scholar
  2. 2.
    R. S. Swanson, and N. V. Petersen, Summary Report of Rendezvous-Compatible-Orbits. Technical Memorandum of the Astro Sciences Group ASG-TM-61–10, January 1961.Google Scholar
  3. 3.
    J. D. Bird, and D. F. Thomas, Jr., A Two-Impulse Plane for Performing Rendezvous on a Once-a-Day Basis. NASA TN D-437, 1960.Google Scholar
  4. 4.
    J. M. Eggleston, and H. D. Beck, A Study of the Positions and Velocities of a Space Station and a Ferry Vehicle During Rendezvous and Return. NASA TR R-87, 1960.Google Scholar
  5. 5.
    J. M. Eggleston, and R. S. Dunning, Analytical Evaluation of a Method of Midcourse Guidance for Rendezvous with Earth Satellites. NASA TN D-883, 1961.Google Scholar
  6. 6.
    J. M. Eggleston, The Trajectories and Some Practical Guidance Considerations for Rendezvous and Return. IAS Paper no. 61 – 36, presented at the IAS 29th Annual Meeting, New York, January 23–25, 1961.Google Scholar
  7. 7.
    J. M. Eggleston, Comparison of Launch Conditions and Trajectories for Manned and Unmanned Ferry Vehicles. Unpublished NASA Langley Research Center Report, February 27 – 28, 1961.Google Scholar
  8. 8.
    W. Wrigley, Performance of a Linear Accelerometer. Mass. Inst. of Tech., Dept. of Aero. Engr., Orbital and Satellite Vehicles, Vol. 1, Notes for a Special Summer Program, Summer Session, Aug. 6–17, 1956, Ch. 9, pp. 9–1–9–14.Google Scholar
  9. 9.
    R. A. Hord, Relative Motion in the Terminal Phase of Interception of a Satellite or a Ballistic Missile. NASA TN 4399, 1958.Google Scholar
  10. 10.
    M. C. Kurbjun, R. F. Brissenden, E. C. Foudriat, and B. B. Burton, Pilot Control of Rendezvous. IAS Paper no. 61 – 37, presented at the IAS 29th Annual Meeting, New York, January 23 – 25, 1961.Google Scholar
  11. 11.
    R. F. Brissenden, B. B. Burton, E. C. Foudriat, and J. B. Whitten, Analog Simulation of a Pilot-Controlled Rendezvous. NASA TN D-747, 1961.Google Scholar
  12. 12.
    N. E. Sears, Jr., and P. G. Felleman, Terminal Guidance for a Satellite Rendezvous. Presented at the ARS Controllable Satellite Conference, MIT, April–May 1959; ARS Preprint 778–59.Google Scholar
  13. 13.
    L. S. Cicolani, Trajectory Control in Rendezvous Problems Using Proportional Navigation. NASA TN D-772, April 1961.Google Scholar
  14. 14.
    A. D. Wheelon, An Introduction to Midcourse and Terminal Guidance. JPL Report no. 145, June 1958.Google Scholar
  15. 15.
    W. H. Clohessy, and R. S. Wiltshire, Terminal Guidance Systems for Satellite Rendezvous. IAS Paper no. 59 – 93, June 1959.Google Scholar
  16. 16.
    E. Levin, and J. Ward, Manned Control of Orbital Rendezvous. P–1834, the RAND Corporation, October 20, 1959.Google Scholar
  17. 17.
    T. M. Carney, and E. C. Lineberry, Automatic Terminal Guidance Logic for Rendezvous Vehicles. Unpublished NASA Langley Research Center Report, February 1961.Google Scholar
  18. 18.
    J. M. Eggleston, Optimum Time to Rendezvous. ARS Journal 30, no. 11 (1960).MathSciNetCrossRefGoogle Scholar
  19. 19.
    L. W. Spradlin, The Long-Time Satellite Rendezvous Trajectory. Proceedings of the National Specialists Meeting on Guidance of Aerospace Vehicles, Boston, Mass., May 25–27, 1960.Google Scholar
  20. 20.
    H. Hornby, Least Fuel, Least Energy and Salvo Rendezvous. Presented at the 15th Annual Spring Technical Conference, Cincinnati, Ohio, April 12 and 13, 1961.Google Scholar
  21. 21.
    J. M. Eggleston, Extensions of Optimum Time to Rendezvous Studies. Unpublished NASA Langley Research Center Report, February 1961.Google Scholar
  22. 22.
    H. Hornby, Problems of Rendezvousing Space Vehicles and Application in the Manned Lunar Landing Mission. NASA Prospective Report, 1961.Google Scholar
  23. 23.
    E. C. Lineberry, and M. C. Kurbjun, A Preliminary Study of Manned Control of the Terminal Phase of Rendezvous Using Visual Techniques. Unpublished NASA Langley Research Center Report, February 21, 1961.Google Scholar
  24. 24.
    L. J. Lina, and A. W. Vogeley, Preliminary Study of a Piloted Rendezvous Operation from the Lunar Surface to an Orbiting Space Vehicle. Unpublished NASA Langley Research Center Report, February 21, 1961.Google Scholar
  25. 25.
    R. H. Battin, and J. H. Laning, Jr., A Recoverable Interplanetary Space Probe. Massachusetts Institute of Technology. Instrumentation Laboratory Report R-235, Vol. IV, Appendices 1959.Google Scholar
  26. 26.
    W. E. Brunk, and R. J. Flaherty, Methods and Velocity Requirements for the Rendezvous of Satellites in Circumplanetary Orbits. NASA TN D-81, 1959.Google Scholar
  27. 27.
    W. H. Clohessy, and R. S. Wiltshire, Problems Associated with the Assembly of a Multiunit Satellite in Orbit. Presented at the ASME Aviation Conference, Los Angeles, March 1959, ASME Paper 59-AV-25.Google Scholar
  28. 28.
    R. Cornog, Economics of Satellite Supply Vehicles. Presented at the Aviation Conference, Los Angeles, Calif., March 9–12, 1959, of the American Society of Mechanical Engineers, ASME Paper 59-AV-33.Google Scholar
  29. 29.
    W. W. Duke, E. A. Goldberg, and I. Pfeffer, Error Analysis Consideration for a Satellite Rendezvous. ARS Preprint no. 1198 – 60, May 1960.Google Scholar
  30. 30.
    E. L. Drain, Terminal Guidance in Satellite Rendezvous. Thesis, Astronautical Engineer, University Michigan, May 1960 (AD 239807).Google Scholar
  31. 31.
    T. N. Edelbaum, Preliminary Comparison of Air and Ground Launching of Satellite Rendezvous Vehicles. IAS Paper 61 – 10, New York, January 23 – 25, 1961.Google Scholar
  32. 32.
    K. A. Ehricke, Establishment of Large Satellites by Means of Small Orbital Carriers. Proc. IIIrd International Astronautical Congress, Stuttgart, 1952, pp. 111–145.Google Scholar
  33. 33.
    K. A. Ehricke, Ascent of Orbital Vehicles. Astronaut. Acta 2, 175–190 (1956).Google Scholar
  34. 34.
    T. B. Garber, Ascent Guidance for a Satellite Rendezvous. Proceedings of the Manned Space Stations Symposium. Sponsored by the IAS, NASA, and the Rand Corp., Los Angeles, Calif., April 20–22, 1960.Google Scholar
  35. 35.
    K. W. Gatland, Orbital Rockets — I. Some Preliminary Considerations. J. Brit. Interplan. Soc. 1951, 97 – 107.Google Scholar
  36. 36.
    E. Harrison, Some Considerations of Guidance and Control Techniques for Coplanar Rendezvous. IAS National Specialists Meeting on Guidance of Aerospace Vehicles, May 25–27, 1960.Google Scholar
  37. 37.
    A. P. Harry, and A. L. Friedlander, Exploratory Statistical Analysis of Planet Approach-Phase Guidance Schemes Using Range, Range-Rate, and Angular-Rate Measurement. NASA TN D-268, 1960.Google Scholar
  38. 38.
    L. J. Kamm, SATRAC: Satellite Automatic Terminal Rendezvous and Coupling. ARS Paper 1497–60, Washington, December 5–8, 1960.Google Scholar
  39. 39.
    O. C. Kaste, and D. Novak, Study of the Rendezvous Mission. Martin Company, MLV Tech. Note 13, 1960.Google Scholar
  40. 40.
    C. L. Keller, Satellite Ascent Paths. Sperry Engr. Rev. December 1958, 2–14.Google Scholar
  41. 41.
    T. A. Magness, J. B. McGuire, and O. K. Smith, Accuracy Requirements for Inter-Planetary Ballistic Trajectories. Proceedings of the IXth International Astronautical Congress, Amsterdam, 1958, Vol. I, pp. 286–306. Wien: Springer, 1959.Google Scholar
  42. 42.
    G. W. Morgenthaler, On Mid-Course Guidance in Satellite Interception. Astronaut. Acta 5, 328–346 (1959).Google Scholar
  43. 43.
    C. J. Mundo, Jr., Trade-Off Considerations in the Design of Guidance Equipment for Space Flight. Aero/Space Engineering, June 1959, pp. 31 – 34.Google Scholar
  44. 44.
    M. L. Nason, Terminal Guidance Technique for Satellite Interception Utilizing a Constant Thrust Rocket Motor. ARS Journal 30, no. 9 (1960).Google Scholar
  45. 45.
    M. L. Nason, Terminal Guidance and Rocket Fuel Requirements for Satellites. Presented at American Rocket Soc. Controllable Satellite Conference, MIT, April 30 — May 1, 1959, ARS paper 777–59.Google Scholar
  46. 46.
    A. W. Nelson, Manned Orbital Rendezvous. ARS Paper no. 1493 – 60, December 1960.Google Scholar
  47. 47.
    B. H. Paiewonsky, Transfer Between Vehicles in Circular Orbits. Jet Propulsion 1958, 121.Google Scholar
  48. 48.
    A. L. Passera, Conditional-Switching Terminal Guidance (A Terminal Guidance Technique for Satellite Rendezvous). PGANE — IRE, December 1960.Google Scholar
  49. 49.
    R. E. Roberson, Gyroscopic Sensing of Satellite Yaw. Presented at the 1st Congress of the International Federation of Automatic Control, Moscow, June 1960.Google Scholar
  50. 50.
    E. Roberson, Path Control for Satellite Rendezvous. Presented at the Sixth Annual Meeting, American Astronautical Society, New York, January 1960.Google Scholar
  51. 51.
    H. G. Safren, Differential Correction Method of Interplanetary Navigation. Proceedings of the National Specialists Meeting on Guidance of Aerospace Vehicles, Boston, Mass., May 25–27, 1960.Google Scholar
  52. 52.
    A. J. Skalafuris, and D. H. Schiller, Midcourse Guidance Problem in Satellite Interception. ARS Journal 1960, 41 – 46.Google Scholar
  53. 53.
    E. Simon, A Proposed Control System to Facilitate the Terminal Stages of Manned Rendezvous. ARS Paper no. 1480–60, December 1960.Google Scholar
  54. 54.
    R. A. Smith, Establishing Contact Between Orbiting Vehicles. J. Brit. Interplan. Soc. 1951, 295–299.Google Scholar
  55. 55.
    P. W. Soule, Rendezvous with Satellites in Elliptical Orbits of Low Eccentricity. AAS Preprint 60–71, Seattle, August 8–11, 1960.Google Scholar
  56. 56.
    K. S. Steffan, A Satellite Rendezvous Terminal Guidance System. ARS Preprint no. 1494–60, December 1960.Google Scholar
  57. 57.
    E. A. Stenihoff, Orbital Rendezvous and Guidance. IAS Manned Space Stations Symposium, April 20–22, 1960.Google Scholar
  58. 58.
    R. J. Weber, and W. M. Pauson, Achieving Satellite Rendezvous. ARS Journal (Tech. Notes) 29, 592–595 (1959).Google Scholar
  59. 59.
    C. H. Wolowitz, H. M. Drake, and E. N. Videan, Simulator Investigation of Controls and Display Required for Terminal Phase of Coplanar Orbital Rendezvous. NASA TN D-511, 1960.Google Scholar

Copyright information

© Springer-Verlag Wien 1962

Authors and Affiliations

  • John C. Houbolt
    • 1
  1. 1.Dynamic Loads DivisionNASA-Langley Research CenterLangley FieldUSA

Personalised recommendations