Advertisement

Biological membranes

  • H. L. Booij
  • H. G. Bungenberg de Jong
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 1 / 2)

Abstract

It is a well known fact that the contents of living cells differ very much from the medium. Muscle cells, e.g. contain ten times as much K+-ions than blood, but their Na+-concentrations are ten times smaller. These large differences suggest two things. In the first place the living cell must have the disposal over a mechanism which allows the—selective—uptake (or secretion) of ions. The energy for this process must be derived from metabolism. Secondly there must be a barrier against the free diffusion of ions. Otherwise the ions taken up would be lost very soon. Many experiments suggest that the outer membrane of cells has the properties sought for. The tonoplast of the plant cell and the membranes between nucleus and cytoplasm or between mitochondria and cytoplasm may have comparable properties.

Keywords

Double Layer Complex Theory Phosphatidic Acid Naphthalene Acetic Acid Hydrophilic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, A. E., and A. R. Trim, 1946: The biological activity of phenolic compounds. The effect of surface active substances upon the penetration of hexyl-resorcinol into Ascaris lumbricoides var. suis. Proc. Roy. Soc. Lond. B133, 220–234.Google Scholar
  2. Booij, H. L., 1940: The protoplasmic membrane regarded as a complex system. Rec. trav. bot. néerl. 37, 1–77.Google Scholar
  3. — 1949: Some typical actions of fatty acids and fatty anions on biological and colloid systems. Commun. 1st Intern. Congress of Biochem. Cambridge, 253-256.Google Scholar
  4. — 1949: The protoplasmic membrane regarded as a lipoprotein complex. Disc. Faraday Soc. 6, 143–152.CrossRefGoogle Scholar
  5. — 1954: Colloid-chemical contributions to the problem of biological permeability. Acta Physiol. Pharmacol. Neerl. 3, 536–552.PubMedGoogle Scholar
  6. — and M. Brand, 1953: The influence of alcohols on the fermentation of glucose by yeast cells. Acta Physiol. Pharmacol. Neerl. 3, 100–112.PubMedGoogle Scholar
  7. — and H. G. Bungenberg de Jong, 1949: Researches on plant growth regulators XV. Biochim. Biophys. Acta 3, 242–249.CrossRefGoogle Scholar
  8. — and A. M. van Leeuwen, 1953: Influence of organic compounds on soap and phosphatide coacervates XVIII. Proc. Kon. Ned. Akad. Wetensch. Amst. B56, 255–267.Google Scholar
  9. Bungenberg de Jong, H. G., A. de Barker, and D. Andriesse, 1955: Contributions to the colloid chemistry of phosphatides I and II. Proc. Kon. Ned. Akad. Wetensch. Amst. B58, 239–265.Google Scholar
  10. Bungenberg de Jong, H. G., and J. Bonner, 1935: Phosphatide autocomplex coacervates as ionic systems and their relation to the protoplasmic membrane. Protoplasma 24, 198–218.CrossRefGoogle Scholar
  11. Collander, R., 1926: Über die Permeabilität von Kollodiummembranen. Soc. Sci. Fennica Comm. Biol. II, Nr. 6.Google Scholar
  12. — und H. Bärlund, 1933: Permeabilitätsstudien an Chara ceratophylla. Acta Botan. Fennica 11, 1–114.Google Scholar
  13. Danielli, J. F., and E. N. Harvey, 1935: The tension at the surface of mackerel egg oil, with remarks on the nature of the cell surface. J. cellul. a. comp. Physiol. (Am.) 5, 483–494CrossRefGoogle Scholar
  14. Davson, H., and J. F. Danielli, 1943: The Permeability of Natural Membranes, Cambridge.Google Scholar
  15. Gay, H., and T. F. Anderson, 1954: Serial sections for electron microscopy. Science 120, 1071–1073.PubMedCrossRefGoogle Scholar
  16. Gorter, E., and F. Grendel, 1926: On the spreading of the different lipoids from chromocytes of different animals. Proc. Kon. Ned. Akad. Wetensch. Amst. 29, 318–320.Google Scholar
  17. Green, J. W., 1949: The relative rate of permeability of the lower saturated monocarboxylic acids into mammalian erythrocytes. J. cellul. a. comp. Physiol. (Am.) 33, 247–266.CrossRefGoogle Scholar
  18. Hanahan, D. J., and I. L. Chaikoff, 1947: The phosphorus-containing lipides of the carrot. J. biol. Chem. (Am.) 168, 233–240.PubMedGoogle Scholar
  19. Loeven, W. A., 1951: Seasonal variations in the water permeability of Allium epidermal cells. Proc. Kon. Ned. Akad. Wetensch. Amst. C54, 411–420.Google Scholar
  20. Michaelis, L., and A. Fujita, 1925: Untersuchungen über elektrische Erscheinungen und Ionenduichlässigkeit von Membranen IV. Biochem. Z. 161, 47–60.Google Scholar
  21. Naegeli, C. W. von, 1881: Cited in W. Pfeffer, Pflanzenphysiologie, Leipzig.Google Scholar
  22. Nirenstein, E., 1920: Über das Wesen der Vitalfärbung. Pflügers Arch. 179, 233–337.CrossRefGoogle Scholar
  23. Osterhout, W. J. V., and W. M. Stanley, 1932: The accumulation of electrolytes V. Models showing accumulation and a steady state. J. gen. Physiol. (Am.) 15, 667–689.PubMedCrossRefGoogle Scholar
  24. Overton, E., 1895: Über die osmotischen Eigenschaften der lebenden Pflanzen-und Tierzellen. Vjschr. naturf. Ges. Zürich 40, 159–201.Google Scholar
  25. Ruhland, W., und C. Hoffmann, 1925: Die Permeabilität von Beggiatoa mirabilis. Planta 1, 1–83.CrossRefGoogle Scholar
  26. Schulman, J. H., and W. McD. Armstrong, 1947: Biological activity in relation to structure and spacing of simple ionic polar groups. In Surface Chemistry, London 1949, 273-279.Google Scholar
  27. Veldstra, H., and H. L. Booij, 1949: Researches on plant growth regulators XVII. Biochim. Biophys. Acta 3, 278–312.CrossRefGoogle Scholar
  28. Warburg, O., und R. Wiesel, 1912: Über die Wirkung von Substanzen homologer Reihen auf Lebensvorgänge. Pflügers Arch. 144, 465–488.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1956

Authors and Affiliations

  • H. L. Booij
    • 1
  • H. G. Bungenberg de Jong
    • 1
  1. 1.Department of Medical ChemistryUniversity of LeidenLeidenThe Netherlands

Personalised recommendations