The pH of Animal Cells

  • Floyd J. Wiercinski
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 2 / B/2 / c)


From the physicochemieal point of view protoplasm has been defined as a colloidal solution of amphoteric electrolytes. To understand the behavior of such a solution it is necessary to know the hydrogen ion concentration. This, beyond doubt, is one of the most important variables. Changes in hydrogen ion concentration can have serious effects on the behavior of protoplasm; for example, on enzymatic activity, and on the state of aggregation of proteins.


Colorimetric Determination NILE Blue Vital Staining Indicator Solution Protein Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, A., 1952: Ionization, pH and biological activity. Pharmacol. Rev. 4, 136–167.PubMedGoogle Scholar
  2. Albritton, E. C., 1952: Standard Values in Blood. Philadelphia.Google Scholar
  3. Alexandrov, W., 1932: über die Bedeutung der Oxydo-Reduktion, Bedingungen für die vitale Färbung, mit besonderer Berücksichtigung der Kernfärbung in lebendigen Zellen. Protoplasma 17, 161–217.Google Scholar
  4. Armstrong, P. B., 1927: Determination of the pH of developing Fundulus eggs. Proc. Soc. exper. Biol. a. Med. (Am.) 25, 146–147.Google Scholar
  5. Arrhenius, S., 1887a: Einfluß der Neutralsalze auf die Reaktionsgeschwindigkeit der Verseifung von Äthylacetat. Z. physik. Chem. 1, 110–133.Google Scholar
  6. Arrhenius, S., 1887b: Über die Dissociation der in Wasser gelösten Stoffe. Z. physik. Chem. 1, 631–648.Google Scholar
  7. Arrhenius, S., 1889: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. physik. Chem. 4, 226–248.Google Scholar
  8. Arvanitaki, A., and N. Chalazonitis, 1951: Recherches sur la répartition de quelques catalyseurs respiratoires dans l’espace cellulaire (axon géant et soma neuronique de Sepia). Arch. sci. physiol. 5, 207–226.Google Scholar
  9. Atkins, W. R. G., 1922: Dibromthymolsulphonephthalein as a reagent for determining the hydrogen ion concentration of living cells. J. Mar. Biol. Assoc. (United Kingdom). 12, 781–784.Google Scholar
  10. Bate-Smith, E. C., 1948: On the observation of pH and the related properties of meat. J. Soc. Chem. Ind. 67, 83–90.Google Scholar
  11. Benedetti-Pichler, A. A., 1937: Qualitative analysis of microgram samples. Ind. Eng. Chem. Anal. Ed. 9, 483–487.Google Scholar
  12. Benedetti-Pichler, A. A., and J. R. Rachele, 1940: Limits of identification of simple confirmatory tests. Ind. Eng. Chem. Anal. Ed. 12, 233–241.Google Scholar
  13. Benson, C. C., 1928: Hydrogen ion concentration of fish muscle. J. biol. Chem. 78, 583–590.Google Scholar
  14. Bernal, J. D., and R. H. Fowler, 1933: A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548.Google Scholar
  15. Bertani, G., 1944: Contributo alio studio del pH intranucleare nelle cellule delle ghiandole salivari di Chironomus thummi. Rend. ist. lombardo sci. ser. 3, 77, 427–436.Google Scholar
  16. Bjerrum, N., 1917: Die moderne Auffassung der sauren und basischen Reaktion und ihre Anwendung in der Analyse. Benützte Bezeichnungen. Z. anal. Chem. 56, 13–28; Die Farbstoffindikatoren. 56, 81-95.Google Scholar
  17. Boche, R. D., and J. B. Buck, 1942: Studies on the hydrogen ion concentration of blood and their direct bearing on in-vitro cytological technique. Physiol. Zool. 15, 293–303.Google Scholar
  18. Bodine, J. H., and D. E. Fink, 1925: A simple micro vessel with electrode for determining the hydrogen ion concentration of small amounts of fluid. J. gen. Physiol. 7, 735–740.PubMedGoogle Scholar
  19. Bodine, J. H., 1927: Potentiometrie studies on intracellular pH values of single Fundulus egg cells. J. gen. Physiol. 10, 533–540.Google Scholar
  20. Borei, H., 1948: Respiration of oocytes, unfertilized eggs and fertilized eggs from Psammechinus and Asterias. Biol. Bull. 95, 124–150.PubMedGoogle Scholar
  21. Bodine, J. H., 1949: Independence of post-fertilization respiration in the sea urchin egg from the level of respiration before fertilization. Biol. Bull. 96, 117–122.Google Scholar
  22. Bourne, G. H., 1951: Cytology and Cell Physiology. 2nd Edition. London.Google Scholar
  23. Bozler, E., 1924: Über die Morphologie der Ernährungsorganellen und die Physiologie der Nahrungsaufnahme von Paramecium caudatum. Arch. Protistenk. 49, 163–215.Google Scholar
  24. Brachet, J., 1944: Embryologie Chimique. Paris.Google Scholar
  25. Brachet, J., 1950: Chemical Embryology. English translation by L. G. Barth. New York.Google Scholar
  26. Britton, H. T. S., 1942: Hydrogen ions. 3rd Edition. London.Google Scholar
  27. Brockman, C. J., 1935: A symposium on indicators. Chem. Rev. 16, 53–55.Google Scholar
  28. Brooks, S. C., and M. M. Brooks, 1941: The permeability of living cells. Berlin. Reprinted 1944. Ann Arbor.Google Scholar
  29. Brown, J. H., 1923: The colorimetric determination of the hydrogen ion concentration of small amounts of fluid. J. Labor. a. clin. Med. (Am.) 9, 239–244.Google Scholar
  30. Buytendijk, F. J., and M. W. Woerdemann, 1927: Die Messung der Wasserstoffionenkonzentration. Arch. Entw. mechan. 2, 387–410.Google Scholar
  31. Carnot, P., R. GLéNard, et Mme. Gruzewska, 1925: Les colorations vitales au rouge neutre comme indices de la concentration ioniques des organes vivants. C. r. Soc. Biol. 92, 865–868.Google Scholar
  32. Caldwell, P. C., 1953: Measurement of intracellular pH by means of a tungsten micro-electrode. J. Physiol. 120, 31 P.Google Scholar
  33. Caldwell, P. C., 1954: An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes. J. Physiol. 126, 169–180.PubMedGoogle Scholar
  34. Caldwell, P. C., and E. J. Harris, 1952: Metabolic control by intracellular pH. Biochem. J. 51, xli.Google Scholar
  35. Chamrers, R., 1922: New apparatus and methods for the dissection and injection of living cells. Anat. Rec. (Am.) 24, 1–19.Google Scholar
  36. Chamrers, R., 1928: The relation of the environment to the pH of protoplasm and of its inclusion bodies. Biol. Bull. 55, 369–376.Google Scholar
  37. Chamrers, R., 1929a: Vital staining with methyl red. Proc. Soc. exper. Biol. a. Med. (Am.) 27, 809–811.Google Scholar
  38. Chamrers, R., 1929b: Hydrogen ion concentration of protoplasm. Bull. National Research Council (U.S.) 69, 37–47.Google Scholar
  39. Chamrers, R., 1932: The pH of the protoplasm of the Fundulus egg.J. cellul. a. comp. Physiol. (Am.) 1, 65–70.Google Scholar
  40. Chamrers, R., 1940: Micromanipulation of the living cell. Amer. Assoc. Advance. Sci. Publication 14, 20–30.Google Scholar
  41. Chamrers, R., 1943: Electrolytic solutions compatible with the maintenance of protoplasmic structures. Biol. Symposia. 10, 91–109.Google Scholar
  42. Chamrers, R., 1949: Micrurgical studies on protoplasm. Biol. Rev. 24, 246–265.Google Scholar
  43. Chamrers, R., B. Cohen, and H. Pollack, 1931: Permeability of Echinoderm ova to indicators. J. exper. Biol. 8, 1–8.Google Scholar
  44. Chamrers, R., B. Cohen, and H. Pollack, 1932: Reduction potentials of European marine ova and Amoeba proteus as shown by indicators. Protoplasma 17, 376–387.Google Scholar
  45. Chamrers, R., and H. Pollack, 1926: Colorimetric determination of the nuclear and cytoplasmic pH in the starfish egg.J. gen. Physiol. (Am.) 10, 739–755.Google Scholar
  46. Chamrers, R., H. Pollack, and B. Cohen, 1929: Reduction potentials of marine ova as shown by indicators. Brit. J. exper. Biol. 6, 229–247.Google Scholar
  47. Chamrers, R., and R. J. Ludford, 1932: Colorimetric pH of malignant cells in tissue culture. Proc. roy. Soc. 110 B, 120–124.Google Scholar
  48. Chamrers, R., H. Pollack, and S. Hiller, 1927: The protoplasmic pH of living cells. Proc. Soc. exper. Biol. a. Med. (Am.) 24, 760–761.Google Scholar
  49. Cohen, B., R. Chambers, and P. Reznikoff, 1928: Reduction potential of Amoeba dubia by microinjection of indicators. J. gen. Physiol. (Am.) 11, 585–611.PubMedGoogle Scholar
  50. Clark, A. J., 1933: The mode of action of drugs on cells. London.Google Scholar
  51. Clark, W. M., 1928: The determination of hydrogen ions. 3rd Edition. Baltimore.Google Scholar
  52. Clowes, G. H., A. K. Keltch, and M. E. Krahl, 1940: The role of changes in extracellular and intracellular hydrogen ion concentration in the action of local anaesthetic bases. J. Pharmacol. (Am.) 68, 312–329.Google Scholar
  53. Conway, E. J., 1947: Exchanges of potassium, sodium and hydrogen ions between cell and environment. Ir. J. med. Sci. 6th Series, 654–680.Google Scholar
  54. Conway, E. J., and P. J. Fearon, 1944: Acid-labile carbon dioxide in mammalian muscle and hydrogen ion concentration of the muscle fiber. Nature 153, 54–55.Google Scholar
  55. Corson, S. A., 1943: A quantitative method of injecting controlled quantities of aqueous solutions into living cells. Proc. Oklahoma Acad. Sci. 23, 31–32.Google Scholar
  56. Cowan, S. L., 1933: The CO2 dissociation curves and the buffering of crab’s muscle and nerve preparations. J. exper. Biol. 10, 401–411.Google Scholar
  57. Crozier, W. J., 1918: On indicators in animal tissues. J. biol. Chem. (Am.) 35, 455–460.Google Scholar
  58. Crozier, W. J., 1923: A note on the reaction of protoplasm. Proc. Soc. exper. Biol. a. Med. (Am.) 21, 58.Google Scholar
  59. Danielli, J. F., 1937: Relations between surface pH, ion concentrations and interfacial tension. Proc. roy. Soc. B 122, 155–174.Google Scholar
  60. Danielli, J. F., 1941: On the pH at the surface of ovalbumin molecules and the protein error with indicators. Biochem. J. (Brit.) 35, 470–478.PubMedGoogle Scholar
  61. Danielli, J. F., 1946: A critical study of techniques for determining the cytological position of alkaline phosphatase. J. exper. Biol. 22, 110–117.Google Scholar
  62. Daniels, F., J. H. Mathews, and J. W. Williams, 1941: Experimental Physical Chemistry. New York.Google Scholar
  63. Date, S., 1931: Concentration en ions hydrogène dans un corps unicellulaire. C. r. Soc. Biol. 106, 89–93.Google Scholar
  64. Dill, D. B., 1928: The calculation of cell volume changes as a function of hydrogen ion concentration. J. biol. Chem. (Am.) 76, 543–545.Google Scholar
  65. Dill, D. B., H. T. Edwards, and W. V. Consolazio, 1937: Blood as a physicochemical system. XL Man at rest. J. biol. Chem. (Am.) 118, 635–648.Google Scholar
  66. Disteché, A., and M. Dubuisson, 1954: Transient response of the glass electrode to pH step variation. Rev. Sci. Instr. 25, 869–875.Google Scholar
  67. Dole, M., 1941: The Glass Electrode. New York.Google Scholar
  68. Dorfmann, W. A., 1936: A simple type of microelectrode for the determination of pH and Eh. Protoplasma 25, 465.Google Scholar
  69. Dorfmann, W. A., 1938: The pH and anaerobic redox potential in early Amphibian morphogenesis. Bull. biol. med. exper. U. R. S. S. 6, 413–417.Google Scholar
  70. Dorfmann, W. A., and D. E. Grodensky, 1937: The oxidation-reduction and pH gradient of the unfertilized Amphibian egg and the technique of determination of these values in situ. Bull. biol. med. exper. U. R. S. S. 4, 265–268.Google Scholar
  71. Drury, D. R., and P. Rous, 1926a: Influence of lymph soluble tissue materials on the significance of the coloration with some phthalein indicators. J. exper. Med. (Am.) 43, 669–686.Google Scholar
  72. Drury, D. R., and P. Rous, 1926b: Influence of lymph insoluble tissue materials on the significance of the coloration with some phthalein indicators. J. exper. Med. (Am.) 43, 687–701.Google Scholar
  73. Dubuisson, M., 1936: pH changes of muscle during and after contraction. Proc. Soc. exper. Biol. a. Med. (Am.) 35, 609–611.Google Scholar
  74. Dubuisson, M., 1939: Studies on the chemical processes which occur in muscle before, during and after contraction. J. Physiol. (Brit.) 96, 461–482.Google Scholar
  75. Duval, M., F. Gueylard, et P. Portier, 1925: Réaction ioniques du foie dans la série animale. C. r. Soc. Biol. 92, 484.Google Scholar
  76. Eastman, E. D., and G. K. Rollefson, 1947: Physical Chemistry. 1st Edition. New York.Google Scholar
  77. Ephrussi, B., et A. Neukomm, 1927: Sur la variations de l’inhibition de l’œuf d’oursin en fonction du pH de l’eau de mer. C. r. Soc. Biol. 96, 1196–1198.Google Scholar
  78. Fauré-Frémiet, E., 1923: Variations de l’alcalinité de l’œuf de Sabellaria pendant la maturation. C. r. Soc. Biol. 88, 863–866.Google Scholar
  79. Fenn, W. O., 1928: The carbon dioxide dissociation curve of nerve and muscle. Amer. J. Physiol. 85, 207–223.Google Scholar
  80. Fenn, W. O., and F. W. Maurer, 1935: The pH of muscle. Protoplasma 24, 337–345.Google Scholar
  81. Fink, D. E., 1925: Metabolism during embryonic and metamorphic development of insects. J. gen. Physiol. (Am.) 7, 527–543.PubMedGoogle Scholar
  82. Follows, A. B., 1934: A study of mistakes in colour matching made by persons with defective color vision. J. Physiol. (Brit.) 82, 172–178.PubMedGoogle Scholar
  83. Fomin, S. V., et D. N. Strajeko, 1934: Étude des constantes physico-chimiques du tissu musculaire. Conductibilité électrique et le pH dans l’autolyse du tissu musculaire chez les pigeons alleints d’avitaminose B. Ukrain. Biochem. J. 7. 117–124.Google Scholar
  84. Gersch, M., 1936: Untersuchungen über vitale Kern-und Plasmafärbung bei Paramecium.Ver. dtsch. Zool. ges. Anz. 9, 268–274.Google Scholar
  85. Gersch, M., 1937: Vitalfärbung als Mittel zur Analyse physiologischer Prozesse (Untersuchungen an Paramaecium caudatum). Protoplasma 27, 412–441.Google Scholar
  86. Gillespie, L. J., 1920: Colorimetric determination of titration curves without buffer mixtures. J. amer. chem. Soc. 42, 742–749.Google Scholar
  87. Glaser, R. W., 1925: Hydrogen ion concentration in the blood of insects. J. gen. Physiol. (Am.) 7, 599–602.PubMedGoogle Scholar
  88. Glasstone, S., 1946: Textbook of Physical Chemistry. New York.Google Scholar
  89. Gortner, R. A., 1930: The state of water in colloidal and living systems. Trans. Faraday Soc. 26, 678–686.Google Scholar
  90. Graff, S., 1924: Ein Verfahren zur Bestimmung der Wasserstoffionenkonzentration im Gewebe mit Indikatoren. Klin. Wochenschr. 3, Nr. 11.Google Scholar
  91. Graff, S., und E. Rappoport, 1937: Methoden und Ergebnisse der Bestimmung der Wasserstoffionenkonzentration des tierischen Gewebes. Erg. Path. und Path. Anat. 33, 181–279.Google Scholar
  92. Gram, H. C., 1924: Composition and physical properties of normal human blood: A compilation of curves from the literature. Amer. J. med. Sci. 168, 511–526.Google Scholar
  93. Grand, C. G., 1938: Intracellular pH studies on the ova of Mactra solidissima. Biol. Bull. (Am.) 75, 369.Google Scholar
  94. Guilbert, C., and L. Langlais, 1951: pH et rH en biologie. Sem. Hôp. Par. 27, 424–430.Google Scholar
  95. Hall, B. V., 1936: Variations in acidity and oxidation-reduction potential of rodent uterine fluids. Physiol. Zool. 9, 471–497.Google Scholar
  96. Hartley, G. S., and J. W. Roe, 1940: Ion concentrations at interfaces. Trans. Faraday Soc. 36, 101–109.Google Scholar
  97. Hatano, S., and S. Iwata, 1933: Hydrogen ion concentration of histiocyte by vital staining with indicator dyes. J. orient. Med. (Mandsch.) 19, 67.Google Scholar
  98. Hatano, S., and S. Iwata, 1934: Hydrogen ion concentration of histiocyte by vital staining with indicator dyes. J. orient. Med. (Mandsch.) 20, 35.Google Scholar
  99. Heilbrunn, L. V., 1952: An Outline of General Physiology. 3rd Edition. Philadelphia.Google Scholar
  100. Hill, D. K., 1940: Hydrogen ion concentration changes in frog’s muscle following activity. J. Physiol. (Brit.) 98, 467–469.PubMedGoogle Scholar
  101. Hoet, J. P., and P. M. T. Kerridge, 1926: Observations on the muscles of normal and moulting Crustacea. Proc. roy. Soc, Lond. 100 B, 116–119.Google Scholar
  102. Homer, A., 1917: A note on the use of indicators for the colorimetric determination of the hydrogen ion concentration of sera. Biochem. J. 11, 283–291.PubMedGoogle Scholar
  103. Howland, R. B., 1928: The pH of gastric vacuoles. Protoplasma 5, 127–134. 1930: The pH of the vacuolar fluid in Actinosphaerium eichhorni. J. exper. Zool. 55, 53-62.Google Scholar
  104. Jacobs, M. H., 1920: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Amer. J. Physiol. 53, 547–463.Google Scholar
  105. Jaumain, D., 1925: Importance de l’erreur de protéine dans la détermination du pH à l’aide du bleu de bromthymol. C. r. Soc. Biol. 93, 860–862.Google Scholar
  106. Kamada, T., 1935: Contractile vacuole of Paramecium.J. Fac. Sci. Imp. Univ. Tokyo 4, 49–61.Google Scholar
  107. Kedrowsky, B., 1931: Methodik der Kultur in künstlichen Medien, pH-Regulierungen und Ionen-Gleichgewichte im Kultur-Medium. Protoplasma 12, 356–379.Google Scholar
  108. Kerridge, P. T., and F. R. Winton, 1929: The hydrogen ion concentration of the isolated uterus. J. Physiol. (Brit.) 67, 66–76.PubMedGoogle Scholar
  109. Kilpatrick, M., 1935: The colorimetric determination of hydrogen ion concentration in aqueous solutions. Chem. Rev. 16, 57–66.Google Scholar
  110. Kilpatrick, M., and M. L. Kilpatrick, 1932: The teaching of the theory of the dissociation of electrolytes. 2. The definition of pH. J. Chem. Ed. 9, 1010–1016.Google Scholar
  111. Kite, G. L., 1913: Studies on the physical properties of protoplasm. 1. The physical properties of certain animal and plant cells. Amer. J. Physiol. 32, 146–164.Google Scholar
  112. Kolthoff, I. M., 1937: Acid-base indicators. Translated by C. Rosenblum. New York.Google Scholar
  113. Kolthoff, I. M., and N. H. Furman, 1926: Indicators. New York.Google Scholar
  114. Kopac, M. J., 1935: Intracellular pH determinations on marine ova. Ann. Rept. Tortugas Lab., Carnegie Inst. Wash. Year Book 34, 85–86.Google Scholar
  115. Kopaczewski, W., 1928: Pénétration électro-capillaire des matières colorantes dans la cellule. C. r. acad. sci. 186, 1758–1761.Google Scholar
  116. Lee, J. W., 1942: The effect of pH on food vacuole formation in Paramecium. Physiol. Zool. 15, 459–465.Google Scholar
  117. Lison, L., 1935: Études sur la métachromasie. Colorants métachromatiques et substances chromotropes. Arch. Biol. (Fr.) 46, 599–668.Google Scholar
  118. Lison, L., 1941: pH et rh intra-cellulaires. Tabulae Biologicae (The Hague) 19, 1–23.Google Scholar
  119. Lucké, B., 1925: Observations in the intra-vital staining of centrifuged marine eggs. Proc. Soc. exper. Biol. a. Med. (Am.) 22, 305–306.Google Scholar
  120. Margaria, R., 1932: Metodo diretto di registrazione del musculo durante la contrazione. Boll. Soc. ital. Biol. sper. 7, 557–561.Google Scholar
  121. Margaria, R., 1934: An apparent change of pH on stretching a muscle. J. Physiol. (Brit.) 82, 496–497.PubMedGoogle Scholar
  122. Margaria, R., e C. Pulcher, 1934: Dimostrazione dell’ alcalinizzazione del musculo durante la contrazione. Bull. Soc. ital. Biol. sper. 9, 879–880.Google Scholar
  123. Marsh, B. B., 1952: Observations on rigor mortis in whale muscle. Biochem. et Biophys. Acta 9, 127–132.Google Scholar
  124. Mast, S. O., 1947: The food vacuole in Paramecium. Biol. Bull. (Am.) 92, 31–72.PubMedGoogle Scholar
  125. Matsuda, K., 1936a: Studies on Trichomonas vaginalis Donne. J. orient. Med. (Mandsch.) 24, 35–36.Google Scholar
  126. Matsuda, K., 1936b: Hydrogen ion concentration of the cytoplasm of T. vaginalis. J. orient. Med. (Mandsch.) 24, appendix 54.Google Scholar
  127. Matsuda, K., and Y. Koyama, 1949: Salt error of brom-thymol blue; note on colorimetric determinations of pH with brom-thymol blue at 38° C. Tôhoku J. exper. Med. (Jap.) 50, 235–239.Google Scholar
  128. Mccarrison, R., G. Sankärän, and K. B. Madhävä, 1933: Hydrogen ion concentration in organs of pigeons fed on polyneuritis producing diets. Indian J. Med. Res. 20, 739–756.Google Scholar
  129. Mccutcheon, M., and B. Lucré, 1924: The mechanism of vital staining with basic dyes. J. gen. Physiol. (Am.) 6, 501–507.PubMedGoogle Scholar
  130. Michaelis, L., 1947: The nature of the interaction of nucleic acids and nuclei with basic dyestuffs. Cold Spring Harbor Symposia Quant. Biol. 12, 131–142.Google Scholar
  131. Michaelis, L., und A. Kramsztyk, 1914: Die Wasserstoffionenkonzentration der Gewebesäfte. Biochem. Z. 62, 180–185.Google Scholar
  132. Millet, H., 1928: Measurement of the pH of normal, fetal, and neoplastic tissues by means of the glass electrode. J. biol. Chem. (Am.) 78, 281–288.Google Scholar
  133. Morita, Y., and R. Chambers, 1929: Permeability differences between nuclear and cytoplasmic surfaces in Amoeba dubia. Biol. Bull. (Am.) 56, 64–67.Google Scholar
  134. Murray, H. D., and C. A. Spence, 1939: Colour in Theory and Practice. London.Google Scholar
  135. Murray, H. D., 1952: Colour in Theory and Practice. London.Google Scholar
  136. Meyerhof, O., und K. Lohmann, 1926: Über die Vorgänge bei der Muskelermüdung. Biochem. Z. 168, 128–165.Google Scholar
  137. Nagakawa, K., 1935: Über die Pufferungspotenz des Kaninchenuterus. Jap. J. med. Sci. trans. 4 pharmacol. 8, 81–82.Google Scholar
  138. Nassanov, D., 1932: Vitalfärbung des Makronucleus aerober und anaerober Infusorien. Protoplasma 17, 218–238.Google Scholar
  139. Needham, J., and D. M. Needham, 1925a: The hydrogen ion concentration and the oxidation-reduction potential of the cell interior: a microinjection study. Proc. roy. Soc, Lond. 99 B, 259–286.Google Scholar
  140. Needham, J., and D. M. Needham, 1925b: The hydrogen ion concentration and the oxidation-reduction potential of the cell interior. J. Physiol. (Brit.) 59, 77.Google Scholar
  141. Needham, J., and D. M. Needham, 1926: The hydrogen ion concentration and the oxidation-reduction potential of the cell interior before and after fertilization and cleavage. A microinjection study on marine eggs. Proc. roy. Soc, Lond. 99 B, 173–199.Google Scholar
  142. Nerenstein, E., 1925: Über die Natur und Stärke der Säureabscheidung in den Nahrungsvakuolen von Paramecium caudatum. Z. wiss. Zool. 125, 513–518.Google Scholar
  143. Nims, L. F., 1938: Glass electrodes and application for direct recording in vivo. Yale J. Biol. a. Med. (Am.) 10, 241–246.Google Scholar
  144. Nomura, S., and S. Kokubo, 1934: The hydrogen ion concentration of the living tissue in the hydromedusa, Aglantha digitalis Haeckel. Protoplasma 20, 85–89.Google Scholar
  145. Nomura, S., 1939: Intracellular oxidation-reduction potential limiting the ciliary movement. Protoplasma 20, 85–89.Google Scholar
  146. Ogawa, J., 1928: Examination of H ion concentration by means of micromanipulation. VI. Experiments on the reaction of tissues. Tokyo Imp. Univ. Central J. Med. 26, 889–896.Google Scholar
  147. Ogawa, J., 1929: Studien über intrazelluläre Wasserstoffionenkonzentration der Entamoeba histolytica und Entamoeba coli. Zbl. Bakter. Parasitenk. 114, 68–81.Google Scholar
  148. Ogston, A. G., 1947: The definition and meaning of pH. Physiol. Rev. (Am.) 27, 228–239.PubMedGoogle Scholar
  149. Ongaro, D., 1931a: La concentratione idrogenionica nell’uovo del filugello. Annuar. staz. Bacol. sper. Padova. XLVI, 331–340.Google Scholar
  150. Ongaro, D., 1931b: Influenca delia fecondazione e dei trattamenti per l’accelerazione dello sviluppo embrionale. Annuar. staz. sper. Padova XLVI, 341–350.Google Scholar
  151. Pandit, C. G., and R. Chambers, 1932: The pH of the egg of the sea urchin, Arbacia punctulata. J. cellul. a. comp. Physiol. (Am.) 2, 243–349.Google Scholar
  152. Pantin, C. F. A., 1923a: On the physiology of ameboid movement. J. Mar. Biol. Assoc. (United Kingdom) 13, 24–69.Google Scholar
  153. Pantin, C. F. A., 1923b: The determination of pH of microscopic bodies. Nature 111, 81.Google Scholar
  154. Parat, M., 1928: Contribution à l’étude morphologique et physiologique du cytoplasme. Troisième partie. Arch. Anat. microsc. 24, 297–319.Google Scholar
  155. Pastori, G., 1932: Variazioni del pH nei vacuoli delie Vorticelle in sequito a contrazioni provocate. Arch. Sci. biol. (It.) 17, 164–168.Google Scholar
  156. Peterfi, T., 1928: Ein Beitrag zur Methode der pH-Bestimmung in Zellen und Geweben. Z. Mikrosk. 45, 56–59.Google Scholar
  157. Peters, R. A., 1929: Co-ordinative biochemistry of the cell and tissues. “Cell Surfaces.” J. State Med. 37, 683–709.Google Scholar
  158. Pfeiffer, H., 1927: Der gegenwärtige Stand der kolorimetrischen Azidimetrie in der Gewebephysiologie. Eine kritische Umschau unter umstrittenen Fragen. Protoplasma 1, 434–465.Google Scholar
  159. Pollack, H., 1928: Intracellular hydrion concentration studies. Biol. Bull. (Am.) 55, 383.Google Scholar
  160. Rapkine, L., et H. Bouxin, 1926: Études du pH interne des larves de l’Oursin Paracentrotus lividus pendant la régression du squelette déterminée par l’acidification du milieu extérieur. C. r. Soc. Biol. 94, 496–498.Google Scholar
  161. Rapkine, L., et R. Wurmser, 1926: Sur le potentiel de réduction du noyau et les oxydations cellulaires. C. r. Soc. Biol. 94, 989–990.Google Scholar
  162. Rapkine, L., et R. Wurmser, 1928: On intracellular oxidation-reduction potential. Proc. roy. Soc, Lond. 102 B, 128–136.Google Scholar
  163. Raven, C. P., 1937: Experimentelle Untersuchungen über die „Bipolare Differenzierung“ des Polychaeten-und Molluskeneis. Acta Neerl. Morphol. 1, 337–357.Google Scholar
  164. Reilly, J., and W. N. Rae, 1953: Physico-Chemical Methods. Volume 2. New York.Google Scholar
  165. Reiss, P., 1924a: Quelques données sur le pH intérieur apparent du protoplasme et du noyau. Arch. Physique biol. 4, 35–42.Google Scholar
  166. Reiss, P., 1924b: Remarques sur le pH intérieur du noyau cellulaire et ses variations expérimentales. C. r. acad. sci. 179, 641–643.Google Scholar
  167. Reiss, P., 1925: L’évolution du pH intérieur de l’Oursin pendant la fécondation et la division. C. r. Acad. Paris 181, 936–938.Google Scholar
  168. Reiss, P., 1926a: Le pH Intérieur Cellulaire. Paris.Google Scholar
  169. Reiss, P., 1926b: La réduction des indicateurs comme cause d’erreur des mesures colorimétrique du pH. C. r. Soc. Biol. 94, 289.Google Scholar
  170. Reiss, P., 1928a: Étude du vert de bromcrésol comme indicateur de pH intérieur cellulaire. Bull. Inst. Oceanogr. Monaco, No. 526, 1–14.Google Scholar
  171. Reiss, P., 1928b: Étude du vert de bromcrésol comme indicateur de pH intérieur cellulaire. Arch. Physique biol. 7, 25–38.Google Scholar
  172. Reiss, P., und M. Gersch, 1936: Die Zelldifferenzierung und Zellspezialisierung während der Embryonalentwicklung von Aplysia limacina L., zugleich ein Beitrag zu Problemen der vitalen Färbung. Publ. Staz. Napoli 15, 223–273.Google Scholar
  173. Reiss, P., et E. Vellinger, 1926: Recherches potentiométriques sur le pH intérieur du muscle. C. r. Soc. Biol. 94, 1368–1371.Google Scholar
  174. Ricci, J. E., 1952: Hydrogen Ion Concentration. New Concepts in a Systematic Treatment. Princeton.Google Scholar
  175. Rous, P., 1924: The relative reaction of living mammalian tissues. Science 60, 363–364.PubMedGoogle Scholar
  176. Rous, P., 1925a: General features of vital staining with litmus. J. exper. Med. (Am.) 41, 379–398.Google Scholar
  177. Rous, P., 1925b: On the mobilization of acid material within cells and the reaction as influenced by the cell state. J. exper. Med. (Am.) 41, 399–411.Google Scholar
  178. Rous, P., 1925c: Indicated differences in the reaction of the blood and tissues on vital staining with phthaleins. J. exper. Med. (Am.) 41, 451–470.Google Scholar
  179. Rous, P., 1925d: Indicated differences in the reaction of the organs on vital staining with the phthaleins. J. exper. Med. (Am.) 41, 739–759.Google Scholar
  180. Rous, P., 1926: Factors determining the reaction of skin grafts; a study by the indicator method of conditions within an ischemic tissue. J. exper. Med. (Am.) 44, 815–834.Google Scholar
  181. Rous, P., and W. W. Beattie, 1926: The influence in changes in reaction of the blood upon the reaction of the tissues. J. exper. Med. (Am.) 44, 835–854.Google Scholar
  182. Rumjantzew, A., und B. Kedrowsky, 1926: Untersuchung über Vitalfärbung einiger Protisten. Protoplasma 1, 189–203.Google Scholar
  183. Runnström, J., 1949: The mechanism of fertilization in the Metazoa. Advances in Enzymol. 9, 241–347.Google Scholar
  184. Saito, Y., 1936: Investigations on the biological characters of Leishmania donovani. J. orient. Med. (Mandsch.) 24, 43.Google Scholar
  185. Scarth, G. W., 1924: Can the hydrogen ion concentration of living protoplasm be determined? Science 60, 431–432.PubMedGoogle Scholar
  186. Schade, H., P. Neukirch und A. Halpert, 1921: Über lokale Acidosen des Gewebes und die Methodik ihrer intravitalen Messung, zugleich ein Beitrag zur Lehre der Entzündung. Z. exper. Med. 24, 11–56.Google Scholar
  187. Schmidtmann, M., 1924: Über eine Methode zur Bestimmung der Wasserstoffzahl im Gewebe und in einzelnen Zellen. Biochem. Z. 150, 253–255.Google Scholar
  188. Schmidtmann, M., 1925a: Über die intrazelluläre Wasserstoffionenkonzentration. Klin. Wschr. 4, 759.Google Scholar
  189. Schmidtmann, M., 1925b: Über die intrazelluläre Wasserstoffionenkonzentration unter physiologischen und einigen pathologischen Bedingungen. Z. exper. Med. 45, 714–742.Google Scholar
  190. Schmidtmann, M., 1927a: Über intrazelluläre Wasserstoffionenkonzentration und ihre praktische Bedeutung. Z. ärztl. Fortbild. 24, 50–54.Google Scholar
  191. Schmidtmann, M., 1927b: Über intrazelluläre Wasserstoffionenkonzentration zur Methodik. Z. exper. Med. 57, 123–144.Google Scholar
  192. Schmidtmann, M., und K. Matthes, 1927: Untersuchungen über die Reaktion und Permeabilität von Zellen des entzündeten und Geschwulstgewebes. Z. exper. Med. 57, 127–144.Google Scholar
  193. Schmidtmann, M., und A. Seki-Nureddin, 1927: Über intrazelluläre Wasserstoffionenkonzentration; Beeinflussung der Wasserstoffionenkonzentration von Organzellen im Durchspülungsversuch. Z. exper. Med. 58, 340–361.Google Scholar
  194. Shapiro, N. N., 1927: The cycle of hydrogen ion concentration in the food vacuoles of Paramecium, Vorticella and Stylonychia. Trans. amer. Microsc. Soc. 46, 45–53.Google Scholar
  195. Small, J., 1952: The new outlook on pH. Protoplasma 151, 273–276.Google Scholar
  196. Small, J., 1955: The pH of plant cells. Protoplasmatologia II. B. 2. c. Vienna.Google Scholar
  197. Sörensen, S. P. L., 1909a: Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem. Z. 21, 131–304.Google Scholar
  198. Sörensen, S. P. L., 1909b: Étude enzymatiques. II Sur la mesure et l’importance de la concentration des ions hydrogène dans les réactions enzymatiques. C. r. Lab. Carlsberg 8, 1–165.Google Scholar
  199. Spek, J., 1933: Die bipolare Differenzierung des Protoplasmas des Telosteer-Eies und ihre Entstehung. Protoplasma 18, 497–544.Google Scholar
  200. Spek, J., 1934a: Über die bipolare Differenzierung der Eizellen von Nereis limbata und Chaetopterus pergamentaceus. Protoplasma 21, 394–405.Google Scholar
  201. Spek, J., 1934b: Die Reaktion der Protoplasma-Komponenten des Asterias-Eies. Protoplasma 21, 561–576.Google Scholar
  202. Spek, J., 1934c: Die bipolare Differenzierung des Cephalopoden-und des Prosobranchiereies. Vitalfärbungsversuche mit Indikatoren an den Eiern von Loligo vulgaris und Columbella avara. Arch. Entw. mechan. 131, 362–372.Google Scholar
  203. Spek, J., 1937: Das pH in der lebenden Zelle. Erg. Enzymforsch. 6, 1–20.Google Scholar
  204. Spek, J., 1940: Metachromasie und Vitalfärbung mit pH-Indikatoren. Protoplasma 34, 533–584.Google Scholar
  205. Spek, J., und R. Chambers, 1933: Das Problem der Reaktion des Protoplasmas. (Neue experimentelle Studien, ausgeführt an Amöben.) Protoplasma 20, 376–406.Google Scholar
  206. Stella, G., 1929: The combination of carbon dioxide with muscle: its heat of neutralization and its dissociation curve. J. Physiol. (Brit.) 68, 49–66.PubMedGoogle Scholar
  207. Strelnikov, S. D., 1929: L’absorption des colorants basiques par Paramecium caudatum. C. r. Soc. Biol. 100, 1004–1006.Google Scholar
  208. Taylor, H. S., 1931: Treatise on Physical Chemistry. 2nd Edition. New York.Google Scholar
  209. Tchakhotine, S., 1929: II pH intracellular dell’uovo de ricci di mare determinate con metodo della microraggiopunctura. Boll. Soc. ital. Biol. sper. 4, 480–483.Google Scholar
  210. Tiffeneau, M., et D. Broun, 1935: Influence opposée des ions H et OH sur les actions pharmacodynamiques, concernant les appareils autonomes, action sur le tonus utérin. C. r. Soc. Biol. 119, 1380–1382.Google Scholar
  211. Tomicek, O., 1951: Chemical Indicators. Translated by A. R. Weir. London.Google Scholar
  212. Trifonova, A. N., 1934: Parthenogenese der Fische. Acta Zool. 15, 183–213.Google Scholar
  213. Trifonova, A. N., 1937: La physiologie de la differentiation et de la croissance. 1. L’équilibre Pasteur-Meyerhoff dans le développement des Poissons. Acta Zool. 18, 375–445.Google Scholar
  214. Trifonova, A. N., M. F. Vernidoube et N. D. Phillippov, 1939: La physiologie de la différentiation et de la croissance. II Les périodes critiques dans le développement des Salmonidés et leur base physiologique. Acta Zool. 20, 239–267.Google Scholar
  215. Vellinger, E., 1926: Recherches potentiométriques sur le pH intérieur de l’œuf d’Oursin. C. r. Soc. Biol. 94, 1371–1373.Google Scholar
  216. Vellinger, E., 1927: Recherches potentiométriques sur le pH intérieur et sur le potential d’oxydation-réduction de l’œuf d’Oursin. Bull. Inst. océanograph. Monaco 506, 1–12.Google Scholar
  217. Vellinger, E., 1928: Notes sur l’électrode d’antimoine. III. L’erreur saline et l’erreur protéique. Arch. Physique biol. 7, 39–51.Google Scholar
  218. Vlès, F., 1924: Recherches sur le pH intérieur cellulaire. Arch. Physique biol. 4, 1–20.Google Scholar
  219. Vlès, F., 1925a: Considérations théoriques sur le point isoélectrique des ampholytes: Leur application à la formation de complexes. Arch. Physique biol. 4, 228–284.Google Scholar
  220. Vlès, F., 1925b: Notes sur la mesure spectrophotométrique du pH. Arch. Physique biol. 4, 285–321.Google Scholar
  221. Vlès, F., 1926: Microcolorimétrie pour les mesures microscopiques de pH ou de rH. C. r. Soc. Biol. 94, 879–881.Google Scholar
  222. Vlès, F., G. Achard et D. Prikelmaier, 1923: Sur quelques propriétés physico-chimiques des constituants de l’œuf d’Oursin. C. r. acad. sci. 176, 1179–1181.Google Scholar
  223. Vlès, F., et A. De Coulon, 1924: Recherches sur les propriétés physico-chimiques des tissus en relation avec l’état normal ou pathologique de l’organisme. C. r. acad. sci. 179, 82–85.Google Scholar
  224. Vlès, F., et A. De Coulon, 1925: Recherches sur les propriétés physico-chimiques des tissus en relation avec l’état normal ou pathologique de l’organisme. Arch. Physique biol. 4, 43–85.Google Scholar
  225. Vlès, F., et A. De Coulon, 1928: Nouvelle expériences sur les courbes de réceptivité de la Souris pour les greffes de tumeurs. Arch. Physique biol. 7, 1–24.Google Scholar
  226. Vlès, F., et M. Gex, 1928: Recherches sur le spectre ultraviolet de l’œuf d’Oursin (Paracentrotus lividus Lk.) et de ses constituants. Bull. inst. océanograph. Monaco 518, 1–31.Google Scholar
  227. Vlès, F., P. Reiss et E. Vellinger, 1924a: Mesures potentiométriques sur le pH de substances des œufs d’Oursin. C. r. acad. sci. 179, 349–351.Google Scholar
  228. Vlès, F., P. Reiss et E. Vellinger, 1924b: Recherches potentiométriques sur le pH intérieur de l’œuf d’Oursin. Bull. inst. océanograph. Monaco 450, 1–14.Google Scholar
  229. Vlès, F., P. Reiss et E. Vellinger, 1924c: Recherches potentiométriques sur le pH intérieur de l’œuf d’Oursin. Arch. Physique biol. 4, 21–42.Google Scholar
  230. Vlès, et E. Vellinger, 1928: Recherches sur le pigment de l’œuf d’ Arbacia envisagé comme indicateur de pH intracellulaire. Bull. inst. océanograph. Monaco 513, 1–16.Google Scholar
  231. Vonwiller, P., 1921: Intravitale Färbung von Protozoa. Abderhaldens Handbuch der biol. Arbeitsmethoden 5, 87–96.Google Scholar
  232. Walther, O. A., et J. Ulrich, 1926: Une microméthode colorimétrique de mesure du pH. Bull. Soc. chim. biol. 8, 994 et 1106–1111.Google Scholar
  233. Wiercinski, F. J., 1941: An experimental study of intracellular pH in the Arbacia egg. Biol. Bull. (Am.) 81, 305.Google Scholar
  234. Wiercinski, F. J., 1944: An experimental study of protoplasmic pH determination. 1. Amoebae and Arbacia punctulata. Biol. Bull. (Am.) 86, 98–112.Google Scholar
  235. Wiercinski, F. J., 1952: The relation of pH to the shortening of muscle protoplasm by cations. Fed. Proc. no. 1, 11, 172.Google Scholar
  236. Willmer, E. N., 1944: Colour of small objects. Nature 153, 774–775.Google Scholar
  237. Yamamoto, T., 1936: Studies on the rythmical movements of the early embryo of Oryzias latipes.7. Anaerobic movements and oxidation-reduction potential of the egg limiting the rythmical movements. Fac. Sci. Imp. Univ. Tokyo 4, 233–248.Google Scholar
  238. Yosezato, M., 1933: Hydrogen-ion concentration of Entamoeba histolytica. J. orient. Med. (Mandsch.) 19, 66.Google Scholar

Copyright information

© Springer-Verlag in Vienna 1955

Authors and Affiliations

  • Floyd J. Wiercinski
    • 1
  1. 1.Dept. of PhysiologyHahnemann Medical CollegePhiladelphiaUSA

Personalised recommendations