Skip to main content

Part of the book series: Protoplasmatologia ((2120,volume 2 / B/2 / c))

Abstract

Early estimations of pH values in plant cells were based upon determinations of the electromotive force (EMF) developed between a standard hydrogen electrode and the fluid expressed from crushed tissues or liberated by cutting large algal cells such as those of Valonia, Chara or Nitella. These EMF values were then translated into terms of hydrogen ion concentration on the assumption that the numerical value of the EMF in volts depended entirely upon the concentration of hydrogen ions. Then hydrogen ion concentration measured in this way was found to act in biological reactions, mainly enzyme activity, in such a way that the apparent hydrogen ion concentration was related logarithmically to the process investigated. So Sörensen in 1909 introduced the pH scale based upon what he called the “hydrogen-ion exponent.” He defined pH+ as \({1 \over {\left( {\log {P_{{H^ + }}}} \right)}}\) (1909, p. 28, not p. 4) and pH+ became pH as a matter of typographical convenience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Adam, N. K.. 1941: Physics and Chemistry of Surfaces. 3rd Edit. O. U. P.

    Google Scholar 

  • Allen, R. C., 1943: Influence of aluminium on the flower color of Hydrangea macrophylla DC. Cont. Boyce Thompson Inst. 13, 221–242.

    CAS  Google Scholar 

  • Alvim, P. de T., 1949: Studies on the mechanism of stomatal behaviour. Amer. J. Bot. 36, 781–791.

    Article  Google Scholar 

  • Armstrong, J. I., 1929a: Hydrogen-ion Phenomena in Plants I. Hydrion Concentration and Buffers in the Fungi. Protoplasma 8, 222–260.

    CAS  Google Scholar 

  • Armstrong, J. I., 1929b: Hydrogen-ion Phenomena in Plants II. An investigation of the Buffer Complex of Sap from stems of Pelargoniumsp. Protoplasma 8, 513–343.

    Google Scholar 

  • Armstrong, J. I., 1929c: Hydrogen-ion Phenomena in Plants III. The acidity of certain cell-walls considered in relation to the higher fatty acids. Protoplasma 8, 508–521.

    Google Scholar 

  • Arrhenius, S., 1887: über die Dissociation der in Wasser gelösten Stoffe. Z. physik. Chem. 1, 631.

    Google Scholar 

  • Atkins, W. R. G., 1922: The H. i. c. of plant cells. Sci. Proc. Rov. Dublin Soc. (N. S.) 16, 414.

    CAS  Google Scholar 

  • Atkins, W. R. G., 1923: H. i. c. of the soil in relation to the flower colour of Hydrangea hortensis. Sci. Proc. R. D. S. 17, 23.

    Google Scholar 

  • Baird, J. G., and J. H. Prentice, 1930: Changes with age of pH of egg white and egg yolk. Analyst 55, 20.

    Article  CAS  Google Scholar 

  • Bartholomew, E. T., 1923: Internal decline of lemons II. Growth rate, water content, and acidity of lemons at different stages of maturity. Amer. J. Bot. 10, 117–126.

    Article  CAS  Google Scholar 

  • Bates, R. G., 1948: Definitions of pH scales. Chem. Rev. 42, 1–61.

    Article  PubMed  CAS  Google Scholar 

  • Bates, R. G., 1954: Electrometric pH Determinations. Theory and Practice. 331 pp. New York and London.

    Google Scholar 

  • Bell, R. P., 1952: Acids and Bases. London.

    Google Scholar 

  • Ber, A., and Moskwa, 1951: The influence of organic solvents on the growth of plants. Experientia 7, 136–137.

    CAS  Google Scholar 

  • Biedermann, W., 1921: Das Koferment, Komplement der Diastase. Fermentforschung 4.

    Google Scholar 

  • Biedermann, W., Die organische Komponente der Diastasen. Fermentforschung 4.

    Google Scholar 

  • Bjerrum, N., 1923: Die Konstitution der Ampholyte, besonders der Aminosäuren und ihre Dissoziationskonstanten. Z. physik. Chem. 104, 147.

    CAS  Google Scholar 

  • Blank, F., 1947: The Anthocyan Pigments of Plants. Bot. Rev. 13, 241–317.

    Article  CAS  Google Scholar 

  • Bonner, J., 1934: The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21, 406–423.

    CAS  Google Scholar 

  • Bonner, J., 1950: Plant Biochemistry. New York.

    Google Scholar 

  • Boyle, R., 1664: Experiments and considerations touching colours. London.

    Google Scholar 

  • Brecht, F., 1936: Der Einfluß von Wuchsstoff-und Säurepasten auf das Wachstum von Avena- und Helianthus-Keimlingen und seine Abhängigkeit vom Sauerstoffgehalt der Luft. Jb. wiss. Bot. 82, 581.

    Google Scholar 

  • British Standard 1647: 1950: British Standards Institution, 24/28 Victoria Street, Westminster, London S.W. 1.

    Google Scholar 

  • Britton, H. T. S., 1942: Hydrogen Ions. Vols. I and II. London.

    Google Scholar 

  • Brooks, B. T., 1950: Catalysis and Carbonium Ions in petroleum formation. Science 111, 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, M. M., 1926: Penetration into Valonia of oxidation-reduction indicators; estimation of the rH of the sap. Proc. Soc. Exp. Biol. and Med. 23, 265.

    CAS  Google Scholar 

  • Brooks, M. M., 1930: The pH and rH of the sap of Valonia and the rH of its protoplasm. Protoplasma 10, 505.

    Article  CAS  Google Scholar 

  • Brooks, S. C., 1938: The Chemical Nature of the Plasma Membrane as revealed by Permeability. American Naturalist 72, 124–140.

    Article  Google Scholar 

  • Brooks, S. C., 1939: Ion Exchanges in Accumulation and Loss of Certain Ions by the Living Protoplasm of Nitella.J. cellul. a. comp. Physiol. (Am) 14, 383–401.

    Article  CAS  Google Scholar 

  • Brooks, S. C., and M. M. Brooks, 1941: The Permeability of Living Cells. Protoplasma-Monographien Nr. 19. Berlin.

    Google Scholar 

  • Bryan, O. C., 1919: Effects of different reactions on growth and nodule formation of soy beans. Soil Science 8, 227.

    Article  Google Scholar 

  • Buxton, B. H., 1929a: The pH value of cell sap of flowers. J. Roy. Hort. Soc. 54, 1–11.

    Google Scholar 

  • Buxton, B. H., and F. V. Darbishire, 1929b: On the behaviour of “anthocyanins” at varying hydrogen-ion concentrations. J. of Genetics 21, 71.

    Article  CAS  Google Scholar 

  • Buxton, B. H., 1932: Genetics of the primrose Primula acaulis. Jour. Genetics 25, 197–205.

    Google Scholar 

  • Caley, E. C., and R. L. Stoffer, 1953: Changes in concentration of hydrogen ion during precipitation reactions between neutral salt solutions. Science 118, 749–750. (18.12.1953.)

    Article  CAS  Google Scholar 

  • Chambers, R., and T. Kerr, 1932: Intracellular hydrion concentration studies. Jour. Cellular and Comp. Physiology 2, 105.

    Article  CAS  Google Scholar 

  • Chenery, E. M., 1937: The problem of the blue hydrangea. J. Roy. Hort. Soc. London 4, 568–569.

    Google Scholar 

  • Chenery, E. M., 1948-1950: Contributions to the bio-geochemistry of aluminium. Col. Off. (1529) 51. Agr. Res. Stn. Uganda.

    Google Scholar 

  • Clark, L., 1917: Acidity of marine algae. Pujet Sound Marine Sta. Publ. 1, 22.

    Google Scholar 

  • Clark, W. M., 1928: The Determination of Hydrogen. Ions. 3rd Edit. London and Philadelphia: also 1st edit. 1920 and 2nd edit. 1922–1927.

    Google Scholar 

  • Clevenger, C. B., 1919: H. i. c. of plant juices II. Soil Scence 8, 227.

    Article  CAS  Google Scholar 

  • Colla, S., 1928: Nota sulla azione della conc. d. H. i. sulle correnti protoplasmatiche. Protoplasma 5, 179.

    Article  CAS  Google Scholar 

  • Cooke, M. P., 1952: Some aspects of stomatal physiology. Thesis. Q. U. B.

    Google Scholar 

  • Crozier, W. J., 1916: Cell penetration by acids. Jour. Biol. Chem. 26, 217, 235.

    Google Scholar 

  • Crozier, W. J., 1919: Intracellular acidity in Valonia. Journ. Gen. Phys. 1, 581.

    Article  CAS  Google Scholar 

  • Czapek, F., 1922-1925: Biochemie der Pflanzen. Dritte Aufl. Jena.

    Google Scholar 

  • Denny, F. E., and W. J. Youden, 1927: Acidification of unbuffered salt solutions by plant tissue Amer. J. Bot. 14, 395.

    Article  CAS  Google Scholar 

  • Diehl, J. M., C. J. Gorker, G. Van Iterson and A. Kleinhoonte, 1939: The influence of growth hormone on hypocotyls of Helianthws and the structure of their cell walls. Rec. d. Trav. Bot. Néerlandais 36, 709–798.

    CAS  Google Scholar 

  • Dixon, H. H., and T. A. Bennet-Clark, 1930: The Stomatic Control of Transpiration. Nature 126, 601.

    Article  Google Scholar 

  • Doyle, J., and P. Clinch, 1928: Further notes on the metabolism of conifer leaves. Proc. R. I. A. 38, B, 116.

    CAS  Google Scholar 

  • Dustman, R. B., 1925: Inherent factors related to absorption of mineral elements by plants. Bot. Baz. 79, 233.

    CAS  Google Scholar 

  • Gaudichaud, M., 1848: Des sucs séveux acides, et de quelques excrétions alcalines. Compt. Rend. 27, 37.

    Google Scholar 

  • Gustafson, F. G., 1924: Total acidity compared with actual acidity of plant juices. Amer. J. Bot. 11, 1–6.

    Article  CAS  Google Scholar 

  • Gustafson, F. G., 1925: Diurnal changes in the acidity of Bryophyllum calycinum. J. Gen. Physiol. 7, 719.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, F. G., 1927: Chemical Analysis of Tomato Fruits. Papers Mich. Acad. Sci. Arts and Letters 8, 121.

    Google Scholar 

  • Guthrie, J. D., 1934: Metabolism of citric, sulphuric and nitric acid in the potato tuber. Cont. Boyce Thompson Inst. 6, 247–268.

    CAS  Google Scholar 

  • Gutstein, M., 1932: Bestimmung der H-Konzentration in der lebenden Hefe-und Bakterienzelle. Protoplasma 17, 454–470.

    Article  CAS  Google Scholar 

  • Haas, A. R. C., 1916 (a): The acidity of plant cells as shown by natural indicators. J. Biol. Chem. 27, 232.

    Google Scholar 

  • Haas, A. R. C., 1916 (b): A simple and rapid method of studying respiration by the detection of exceedingly minute quantities of carbon dioxide. Science 44, 105.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A. R. C., 1920: Studies on the reaction of plant juices. Soil Science 9. 341.

    Article  CAS  Google Scholar 

  • Haas, A. R. C., 1942: Lime-induced chlorosis in relation to Soil Factors. Plant Physiology 17, 27–51.

    Article  PubMed  CAS  Google Scholar 

  • Heath, O. V. S., 1949: Studies in stomatal behaviour. II. The role of starch in the light response of stomati. New Phytologist 48, 186–211.

    CAS  Google Scholar 

  • Heath, O. V. S., and F. L. Milthorpe, 1950: Studies in Stomatal Behaviour. V. The role of carbon dioxide in the light response of stomata. Jour. Experimental Bot. 1, 29–62, 227-243.

    Article  Google Scholar 

  • Heilbrunn, L. V., 1928: The Colloid Chemistry of Protoplasm. Protoplasma Monographs No. 1. Berlin.

    Google Scholar 

  • Heilbrunn, L. V., 1952: An Outline of General Physiology. 3rd Edit. Philadelphia and London.

    Google Scholar 

  • Hempel, J., 1917: Buffer processes in the metabolism of succulent plants. Compt. Rend. Lab. Carlberg 13, 1.

    CAS  Google Scholar 

  • Herrmann, H., 1879: Handbuch der Physiologic

    Google Scholar 

  • Heyn, A. N. J., 1940: The Physiology of Cell Elongation. Botan. Rev. 6, 515–574.

    Article  CAS  Google Scholar 

  • Heyne, B., 1815: On the desoxidation of the leaves of Cotyledon calycina. Trans. Linn. Soc. 2., 213.

    Google Scholar 

  • Hurd, A. M., 1923: Acidity of corn and its relation to vegetative size. Jour. Agric. Res. 25, 11.

    Google Scholar 

  • Hurd, A. M., 1924: The course of acidity changes during the growth-period of wheat. Jour. Agric. Res. 27, 725.

    CAS  Google Scholar 

  • Hurd-Karrer, A. M., 1928: Changes in the buffer system of the wheat phant. Plant Physiology 3, 131–153.

    Article  PubMed  CAS  Google Scholar 

  • Iljin, W. S., 1914: Die Regulierung der Spaltöffnungen im Zusammenhange mit der Veränderung des osmotischen Druckes. Beih. Bot. Zentralb. 32, 15–35.

    CAS  Google Scholar 

  • Iljin, W. S., 1915: Die Regulierung der Spalt öffnungen. Beih. Bot. Zentralb. 32, 1. Abt.

    Google Scholar 

  • Iljin, W. S., 1922 (a): Wirkung der Kationen von Salzen auf den Zerfall und die Bildung von Stärke in der Pflanze. Biochem. Zeitschr. 132.

    Google Scholar 

  • Iljin, W. S., 1922 (b): Synthese und Hydrolyse von Stärke. Biochem. Zeitschr. 132.

    Google Scholar 

  • Iljin, W. S., 1922 (c): Physiologischer Pflanzenschutz. Biochem. Zeitschr. 132.

    Google Scholar 

  • Iljin, W. S., 1928: Die Durchlässigkeit der Protoplasmas. Protoplasma 3, 558.

    Article  Google Scholar 

  • Ingold, C. T., and J. Small, 1928: H. i. c. of plant tissues. IX. Improved technique for the R. I. M. Protoplasma 3, 458.

    Article  CAS  Google Scholar 

  • Ingold, C. T., 1929: H. i. c. of plant tissues. X. Buffers of the potato tuber. Protoplasma 6, 51.

    Article  CAS  Google Scholar 

  • Ingold, C. T., 1930 (a): Hydrogen-ion Phenomena in Plants. IV. Buffers of Potato (tuber and leaf). Protoplasma 9, 441–446.

    Article  CAS  Google Scholar 

  • Ingold, C. T., 1930 (b): Hydrogen-ion Phenomena in Plants. V. The buffer systems of plant juices. Protoplasma 9, 447–455.

    Article  CAS  Google Scholar 

  • Ingold, C. T., 1930 (c): Hydrogen-ion Phenomena in Plants. VI. Apparatus for measuring the effect of carbon dioxide on the reaction of plant sap. Protoplasma 9, 456–458.

    Article  CAS  Google Scholar 

  • Irwin, M., 1919: Comparative studies on respiration. VI. Increased production of carbon dioxide accompanied by decrease of acidity. J. Gen. Physiol. 1, 399.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, T., 1947: The buffer complex in the sap of some plants of economic importance. Thesis. Q. U. B.

    Google Scholar 

  • Jacobs, M. H., 1920: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Amer. J. Physiol. 53, 457.

    CAS  Google Scholar 

  • Jacobs, M. H., 1922: The influence of ammonium salts on cell reaction. Jour. Gen. Physiol. 5, 181.

    Article  CAS  Google Scholar 

  • Kappen, H., 1918: Untersuchungen über Wurzelsäfte. Landw. Vers. Stat. 91, 1–40.

    CAS  Google Scholar 

  • Kappen, and M. Zapfe, 1919: Die Azidität der Pflanzensäfte unter dem Einfluß einer Kalkdüngung. Landw. Vers. Stat. 93, 135.

    CAS  Google Scholar 

  • Kiesel, A., 1930: Chemie des Protoplasmas. Protoplasma-Monographien 4. Berlin.

    Google Scholar 

  • Kisselew, N., 1925: Veränderung der Durchlässigkeit des Protoplasmas der Schließzellen im Zusammenhange mit stomatären Bewegungen. Beih. Bot. Zentralbl. 41, 287–308.

    Google Scholar 

  • Kolthoff, I. M. trans. N. H. Furman, 1926: Indicators. New York and London

    Google Scholar 

  • Kopaczewski, W., 1926: Les Ions d’Hydrogène. Paris.

    Google Scholar 

  • Kopaczewski, W., 1933: La couche limitante cellulaire. Protoplasma 20, 407–439.

    Article  CAS  Google Scholar 

  • Kraus, G., 1883: Die Acidität des Zellsaftes. Abhandl. Naturf. Ges. Halle 16, 154.

    Google Scholar 

  • Krotkof, G., D. G. Wilson, and R. W. Street, 1951: Acid metabolism of Mcintosh Apples during their development on the tree and in cold storage. Canad. Journ. Bot. 29, 79–90.

    Article  Google Scholar 

  • Kuwada, Y., and T. Sakamura, 1926: A contribution to the colloid chemical and morphological study of chromosomes. Protoplasma 1, 239.

    Article  CAS  Google Scholar 

  • Lapicque, L., 1921: Influence des acides et des bases sur une algae d’eau douce. Compt. rend. soc. biol. 84, 493.

    CAS  Google Scholar 

  • Lapicque, L., 1922: Mécanisme des échanges autre la cellule et le milieu ambiant. C. R. Ac. Sci. 174, 1491.

    Google Scholar 

  • Lapicque, L., and M. Kergomard, 1923: Acidification par l’asphyxie chez les Spirogyres. C. R. Soc. Biol. 88.

    Google Scholar 

  • Letter Circular LC 993, 1950: United States National Bureau of Standards, Department of Commerce, Washington, 25. D. C., U. S. A.

    Google Scholar 

  • Lewis, G. N., 1912: The activity of the ions and the degrees of dissociation of strong electrolytes. J. Am. Chem. Soc. 34, 1631.

    Article  Google Scholar 

  • Lillie, R. S., 1909: On the connection between changes of permeability and stimulation and on the significance of changes in permeability to carbon dioxide. Amer. Jour. Physiol. 24, 14.

    Google Scholar 

  • Limperos, G., and K. E. Ranta, 1953: A rapid screening test for determination of the Cholinesterase activity of human blood. Science 117, 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, R. C., and C. P. Harley, 1944: Nutrient interrelations in lime-induced chlorosis. Plant Physiology 19, 420–439.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, F. E., and V. Ulehla, 1926: The rôle of the wall in the living cell. Trans. Roy. Soc. Canada 20, 45.

    CAS  Google Scholar 

  • Loehwing, W. F., 1928: Calcium, potassium and iron balance in certain crop plants in relation to their metabolism. Plant Physiology 3, 261.

    Article  PubMed  CAS  Google Scholar 

  • Loehwing, W. F., 1930: Effects of insolation and soil characteristics on tissue fluid reaction in wheat. Plant Physiology 5, 293–305.

    Article  PubMed  CAS  Google Scholar 

  • Marconi Instruments, Ltd., 1951: Hydrogen Ions — pH Measurement with particular reference to the Glass Electrode. St. Albans.

    Google Scholar 

  • Martin, S. H., M. W. Rea and J. Small, 1926: The Reaction of plant tissues. Report Oxford (94th) meeting Brit. Assoc. Adv. Sci.

    Google Scholar 

  • Martin, S. H., 1927 (a): H. i. c. of plant tissues. III. Tissues of Helianthus annuus. Protoplasma 1, 497.

    Article  CAS  Google Scholar 

  • Martin, S. H., 1927 (b): H. i. c of plant tissues. IV. Buffers of sunflower hypocotyl. Protoplasma 1, 522

    Article  CAS  Google Scholar 

  • Martin, S. H., 1928: H. i. c. of plant tissues. III. Buffers of sunflower stem and root. Protoplasma 3, 273.

    Article  CAS  Google Scholar 

  • Martin, S. H., VIII. Buffers of bean stem and root. Protoplasma 3, 282.

    Google Scholar 

  • Mayer, A., 1875: über die Bedeutung der organischen Säuren in den Pflanzen. Landw. Versuchsstationen 18, 428.

    Google Scholar 

  • Mayer, A., 1878: über die Sauerstoffausscheidung einiger Crassulaceen. Landw. Versuchsstationen 21, 277.

    Google Scholar 

  • Mcclendon, J. F., 1914: On the electric charge of the protoplasm and other substances in living cells. Zschr. f. physik.-chem. Biol. 1, 159.

    CAS  Google Scholar 

  • Michaelis, L. (Trans. W. A. Perlweig), 1926: Hydrogen Ion Concentration. Baltimore.

    Google Scholar 

  • Miller, L. P., 1931: The effect of treatments with ethylene chlorhydrin on the pH of the expressed juice of potato tubers. Contr. Boyce Thompson Inst. 3, 321–336.

    CAS  Google Scholar 

  • Milovidov, P. F., 1949: Physik und Chemie des Zellkernes. Erster Teil. Protoplasma-Monographien, Band 20. Berlin.

    Google Scholar 

  • Mislowitzer, E., 1928: Die Bestimmung der W. i. k. von Flüssigkeiten. Berlin.

    Google Scholar 

  • Newton, J. D., 1923: A comparison of the absorption of inorganic elements and the buffer systems of legumes and non-legumes. Soil Science 15, 181.

    Article  CAS  Google Scholar 

  • Nutman, F. J., 1937 (a): Studies of the physiology of Coffea arabica. I. Photosynthesis in coffee leaves under natural conditions. Ann. Bot. N. S. 1, 3, 353–367.

    CAS  Google Scholar 

  • Nutman, F. J., 1937 (b): Studies of the physiology of Coffea arabica. II Stomatal movements in relation to photosynthesis. Ann. Bot. N. S. 1, 681.

    CAS  Google Scholar 

  • Nutman, F. J., 1938: Stomatal movement and epidermal water-content. Nature 141, 608.

    Article  Google Scholar 

  • Odén, S., 1916: Zur Frage der Azidität der Zellmembranen. Ber. d. deut. bot. Ge-sellsch. 34, 648.

    Google Scholar 

  • Olsen, C., 1935: Iron absorption and chlorosis in green plants. C. R. Lab. Carls-berg 21, No. 3, 15–52.

    CAS  Google Scholar 

  • Oserkowsky, J., 1932: H. i. c. and iron content of tracheal sap from green and chlorotic pear trees. Plant Physiology 7, 253.

    Article  PubMed  CAS  Google Scholar 

  • National Bureau of Standards, U.S.A., 1950: Standardisation of pH measurements made with the glass electrode. Letter Circular. LC 993 (supersedes LC 933).

    Google Scholar 

  • Palitzsch, S., 1916: Sur l’emploi de solution de borax et d’acide borique dans la détermination colorimétrique de la concentration en ions hydrogène de l’eau de mer. C. R. Lab. Carlsberg 11, 199–211.

    Google Scholar 

  • Pantin, C. F. A., 1923: Determination of the pH of microscopic bodies. Nature 111, 81.

    Article  CAS  Google Scholar 

  • Pfeiffer, H. H., 1925 (a): Eine Methode zur kolorimetrischen Bestimmung der W. i. k. in pflanzlichen Gewebeschnitten ohne Anwendung von Moderatoren. Zeitschr. f. wiss. Mikroskopie 42, 396–414.

    Google Scholar 

  • Pfeiffer, H. H., 1925 (b): über die W. i. k. als Determinationsfaktor ohysiologischen Gewebe-geschehens in der sekundären Rinde der Pflanze. New Phytologist 24, 65.

    Article  CAS  Google Scholar 

  • Pfeiffer, H. H., 1926: Der gegenwärtige Stand der kolorimetrischen Azidimetrie in der Gewebephysiologie. Protoplasma 1, 434–465.

    Article  CAS  Google Scholar 

  • Pfeiffer, H. H., 1927: über Unterschiede im Chemismus der Trennungsgewebe bei periodischem und Frostlaubfall usw. Botanisches Archiv (Mez) 18, 319.

    Google Scholar 

  • Pfeiffer, H. H., 1940: Experimentelle Cytologie. Chronica Botanica Co.

    Google Scholar 

  • Priestley, J. H., 1924: The fundamental fat metabolism of the plant. New Phytologist 23, 1.

    Article  CAS  Google Scholar 

  • Pucher, G. W., H. B. Vickery and C. C. Sherman, 1946: The determination of citric acid in biological material. Jour. Biol. Chem. 113, 235–245.

    Google Scholar 

  • Pucher, G. W., et al., 1948: Studies in the metabolism of Crassulacean plants: Diurnal variation in organic acids and starch in excised leaves of Bryophyllum calycinum.Plant Physiology 24, 610.

    Article  Google Scholar 

  • Rea, M. W., and J. Small, 1926: The H. i. c of plant tissues. II. Flowering and other stems. Protoplasma 1, 3, 334.

    Article  CAS  Google Scholar 

  • Rea, M. W., 1927 (a): The H. i. c of plant tissues. V. The tissues of Vicia faba. Protoplasma 2, 1, 45.

    Article  CAS  Google Scholar 

  • Rea, M. W., 1927 (b): The H. i. c of plant tissues. VI. Stem tissue reactions throughout the year. Protoplasma 2, 3, 428.

    Article  CAS  Google Scholar 

  • Rediske, J. H., and G. Biddulph, 1953: The absorption and translocation of iron. Plant Physiology 28, 4, 576–593.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, P., 1926: Le pH intérieur cellulaire. Paris.

    Google Scholar 

  • Ricci, J. E., 1952: Hydrogen Ion Concentration. Princeton.

    Google Scholar 

  • Richards, T. W., 1898: The relation of the taste of acids to their degree of dissociation. Am. Chem. J. 20, 121.

    Article  Google Scholar 

  • Rietsema, J., 1950: Action and penetration of growth substances with special reference to Avena coleoptile sections. Meded. Bot. Lab. Utrecht 1950, No. 1.

    Google Scholar 

  • Rijven, A. H. G. C., 1952: In vitro studies on the embryo of Capsella bursa-pastoris. Meded. Bot. Lab. Utrecht 1952, No. 1.

    Google Scholar 

  • Roberts, O., and J. Doyle, 1938: The pH of conifer leaves in relation to syste-maty. Sci. Proc. Roy. Dubl. Soc. 21, 655–674.

    CAS  Google Scholar 

  • Rogers, C. H., and J. W. Shive, 1932: Factors affecting the distribution of iron in plants. Plant Physiology 7, 227.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, K., 1917: Untersuchungen über den Einfluß des freien H-Ions auf den Vorgang der vitalen Färbung. Pflügers Archiv 168, 411.

    Article  CAS  Google Scholar 

  • Sachs, J., 1862: über saure, alkalische und neutrale Reaktion der Säfte lebender Pflanzenzellen. Bot. Zeitung 20, 264.

    Google Scholar 

  • Sakamura, T., 1927: Chromosomenforschung an frischem Material. Protoplasma 1, 537.

    Article  Google Scholar 

  • Samuel, G., 1927: On the shot-hole disease caused by Clasterosporium carpo-philum and on the “Shot Hole” Effect. Ann. Bot. 41, 375.

    Google Scholar 

  • Sayre, J. D., 1926: Physiology of Stomata of Rumex patientia. Ohio Journ. of Science 26, 233.

    CAS  Google Scholar 

  • Scarth, G. W., 1926: The influence of h. i. c on the turgor and movement of plant cells with special reference to stomatal behaviour. Proc. Internat. Congress Plant Sci., Ithaca. Publ. 1929, 1151–1162.

    Google Scholar 

  • Scarth, G. W., 1932: Mechanism of the action of light and other factors on stomatal movement. Plant Physiology 7, 481.

    Article  PubMed  CAS  Google Scholar 

  • Scarth, G. W., J. Whyte and A. Brown, 1933: On the cause of night opening of stomata. Trans. Roy. Soc. Canada 5, 115.

    Google Scholar 

  • Scarth, G. W., and M. Shaw 1951 (a): Stomatal movement and photosynthesis in Pelargonium.I. Effect of light and carbon dioxide. Plant Physiology 26, 207.

    CAS  Google Scholar 

  • Scarth, G. W., 1951 (b): II. Effects of water deficit and of chloroform: photosynthesis in guard cells. Plant Physiology 26, 581.

    Article  PubMed  CAS  Google Scholar 

  • Schaede, R., 1924: über die Reaktion des lebenden Plasmas. Ber. deutsch. Bot. Ges. 42, 219.

    CAS  Google Scholar 

  • Shive, J. W., and R. A. Ingalls, 1931: Relation of H-ion concentration of tissue fluids to the distribution of iron in plants. Plant Physiology 6, 103–125.

    Article  PubMed  Google Scholar 

  • Schley, E. O., 1913: Chemical and physical changes in geotropic stimulation and response. Bot. Gaz. 56, 480.

    Article  Google Scholar 

  • Schley, E. O., 1920: Geo-presentation and Geo-reaction. Bot. Gaz. 70, 69.

    Article  CAS  Google Scholar 

  • Schwarz, F., 1892: Die morphologische und chemische Zusammensetzung des Protoplasmas. Beitr. Biol. Pflanzen 5.

    Google Scholar 

  • Scott-Moncrieff, R., 1932: A note on the anthocyanin pigments of the primrose Primula acaulis. Jour. Genetics 25, 206.

    Article  Google Scholar 

  • Scott-Moncrieff, R., 1936: A biochemical survey of some Mendelian factors for flower colour. Jour. Genetics 32, 117–170.

    Article  Google Scholar 

  • Seifriz, W., and M. Zetzmann, 1935: A slime mould pigment as indicator of acidity. Protoplasma 23, 175–179.

    Article  CAS  Google Scholar 

  • Seifriz, W., 1936: Protoplasm. New York.

    Google Scholar 

  • Sideris, C. P., and H. Y. Young, 1944: Effects of iron on chlorophyllous pigments, ascorbic acid. acidity and carbohydrates of Ananas comosus (L.) Merr. Plant Physiology 19, 52–75.

    Article  PubMed  CAS  Google Scholar 

  • Sinke, N., 1937: An experimental study on the structure of living nuclei in the resting stage. Cytologia, Fujii Jub. Vol.

    Google Scholar 

  • Sinke, N., 1939: Experimental studies of cell-nuclei. Mem. Coll. Sci., Kyoto Imp. Univ. B, 15. No. 1, 1–116.

    Google Scholar 

  • Small, J., 1918: Changes of electrical conductivity under geotropic stimulation. Proc. Roy. Soc. Lond., B. 90, 349.

    Article  Google Scholar 

  • Small, J., 1920: A theory of geotropism. New Phytologist 19, 49.

    Article  CAS  Google Scholar 

  • Small, J., 1923: Propagation by cuttings in acidic media. Gardeners’ Chronicle 73, 244.

    Google Scholar 

  • Small, J., 1926: H. i. c. of plant tissues. I. The method. Protoplasma 1, 324–333.

    Article  CAS  Google Scholar 

  • Small, J., S. H. Martin And M. W. Rea, 1926: The reaction of plant tissues. Rep. Brit. Assoc, Oxford, p. 410.

    Google Scholar 

  • Small, J., and M. W. Rea, 1926-27: H. i. c. of plant tissues. II, V, VI. Protoplasma 1 and 2 (see REA).

    Google Scholar 

  • Small, J., and C. T. Ingold, 1928: H. i. c. of plant tissues. IX. Improved technique for the R. I. M. Protoplasma 3, 458.

    Google Scholar 

  • Small, J., 1929: Hydrogen-ion concentration of plant cells and tissues. Protoplasma Monographs, No. 2. Berlin.

    Google Scholar 

  • Small, J., and K. M. Maxwell, 1939: pH phenomena in relation to stomatal opening. I. Coffea arabica and some other species. Protoplasma 32, 272.

    Article  CAS  Google Scholar 

  • Small, J., M. I. Clarke and J. Crosbie-Baird, 1942: pH phenomena in relation to stomatal opening. II-V. Proc. Roy. Soc. Edin. 61, 233–266.

    Google Scholar 

  • Small, J., 1946: pH and Plants. London and New York.

    Google Scholar 

  • Small, J., and T. Jackson, 1949 (a): Relative buffer-index values for root saps of some crop plants. Journ. Agric. Sci. 38, 343–344. 1949 (b): Buffer index values in relation to soil-pH tolerances. Plant Physiology 24, 75-83.

    Article  Google Scholar 

  • Small, J., 1950: A note on sugar and starch in stomatal guard-cells. New Phytol. 49, 274–276.

    Article  Google Scholar 

  • Small, J., 1952: The new outlook on pH. Protoplasma 41, 273–276.

    Article  Google Scholar 

  • Small, J., 1954: Modern aspects of pH. London.

    Google Scholar 

  • Small, J., 1955: Estimation of pH values. Subsection F of Section II. General methods, in “Modern methods of Plant Analysis.” Springer, Berlin (in the press).

    Google Scholar 

  • Smith, E. P., 1923: Effects of anaesthetics on plants. Nature 112, 654.

    Article  Google Scholar 

  • Smith, E. P., 1924: The effect of general anaesthetics on the respiration of cereals. Ann. Bot. 38, 261.

    CAS  Google Scholar 

  • Smith, E. P., 1928: The reaction of the medium in relation to root formation in Coleus. Trans. Bot. Soc. Edin. 30, 53–58.

    Article  Google Scholar 

  • Smith, E. P., 1931: Flower colours as natural indicators. Bot. Soc. Edin. 30, 230–238.

    Article  Google Scholar 

  • Smith, E. P., 1933: The calibration of flower colour indicators. Protoplasma 18, 112–124.

    Article  CAS  Google Scholar 

  • Sörensen, S. P. H., 1909: Études enzymatiques. II Sur la mesure et l’importance de la concentration des ions hydrogène dans les réactions enzymatiques. Compt. Rend. Lab. Carlsberg 8, 1 (note définition of pH on p. 28, not that on p. 4).

    Google Scholar 

  • Spek, J., and R. Chambers, 1933: Das Problem der Reaktion des Protoplasmas. Protoplasma 20, 376–406.

    Article  CAS  Google Scholar 

  • Stanfield, J. F., 1937: Certain physico-chemical aspects of sexual differentiation in Lychnis dioica. Amer. J. Bot. 24, 710–719.

    Article  CAS  Google Scholar 

  • Stanfield, J. F., 1944: Chemical composition of roots and tops of dioecious Lychnis in vegetative and flowering phases of growth. Plant Physiol. 19, 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Thoday, D., and H. Evans, 1931: Buffer systems in Kleinia articulata. Protoplasma 14, 64–74.

    Article  Google Scholar 

  • Thoday, D., and H. Evans, 1932: The distribution of calcium and phosphate in the tissues of Kleinia articulata and some other plants. Ann. Bot. 46, 781–806.

    CAS  Google Scholar 

  • Thoday, D., and H. Evans, 1933: The distribution of some solutes in the tissues of Kleinia articulata.Ann. Bot. 47, 1–20.

    CAS  Google Scholar 

  • Thoday, D., and M. W. P. Jackson, 1939 (a): The distribution of calcium malate and other solutes in the stems and leaves of succulent Compositae. Ann. Bot. N. S. 3, 1–26.

    Google Scholar 

  • Thoday, D., and K. M. Jones, 1939 (b): Malic acid and respiration during starvation in Kleinia articulata. Ann. Bot. N. S. 3, 677–698.

    CAS  Google Scholar 

  • Thomas, M., 1951 (a): Vegetable acids in higher plants. Endeavour 10, 160–165.

    CAS  Google Scholar 

  • Thomas, M., 1951 (b): Carbon dioxide fixation and acid synthesis in Crassulacean acid metabolism. Symposia of Soc. for Exp. Biology 5, 72–93.

    CAS  Google Scholar 

  • Tomicek, O., and J. Feldman, 1934: The determination of acidity in non-aqueous solutions. Coll. Czechoslov. Chem. Comm. 6. See Chem. Abst. 1935, 29, 704 for oils and solutions: 6171 for more solutions.

    Google Scholar 

  • Truog, E., 1918: Soil acidity. I. Its relation to the growth of plants. Soil Science 5, 169–195.

    Article  CAS  Google Scholar 

  • Truog, E., and M. R. Meacham, 1919: Soil acidity. II. Its relation to the acidity of the plant juice. Soil Science 7, 469.

    Article  CAS  Google Scholar 

  • Ülehla, V., and V. Moravek, 1922: Über die Wirkung von Säuren und Salzen auf Basidiobolus ranarum Eid. Ber. deutsch. bot. Ges. 40, 9.

    Google Scholar 

  • Ülehla, V., 1928: Geweberegulation bei Sukkulenten. Protoplasma 3, 469.

    Article  Google Scholar 

  • Van Santen, A. M. A., 1938: Influence of hydrogen-ion concentration on the growth rate of the Avena coleoptile. Proc. Konin. Neder. Akad. v. Weten. 41, 513–523.

    Google Scholar 

  • Van Santen, 1940: Groei, Groeistof en pH. Thesis. Utrecht.

    Google Scholar 

  • Van Slyke, D. D., 1922: On the measurements of buffer values and on the relationship of buffer-value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. Jour. Biol. Chem. 52, 525.

    Google Scholar 

  • Vickery, H. B., 1952: The behaviour of isocitric acid in excised leaves of Bryophyllum calycinum during culture in alternating light and darkness. Plant Physiology 27, 9.

    Article  PubMed  CAS  Google Scholar 

  • Walbum, L. E., 1913: Sur l’emploi de l’extrait de choux rouge comme indicateur dans la mesure colorimétrique de la conc. d. ions hydrogène. C. R. Lab. Carlsberg 10, 227.

    Google Scholar 

  • Walling, C., 1950: The acid strength of surfaces. J. Amer. Chem. Soc. 72, 1164–1168.

    Article  CAS  Google Scholar 

  • Watson, G. N., 1913: The juice of the blueberry as an indicator. Am. J. Pharm. 85, 246.

    CAS  Google Scholar 

  • Weber, F., 1923 (a): Zur Physiologie der Spaltöffnungsbewegung. Österr. botan. Zeitschr. 1923, No. 1-3, 43–57.

    Google Scholar 

  • Weber, F., 1923 (b): Enzymatische Regulation der Spaltöffnungsbewegung. Die Naturwiss., Wien, 2, 17, 309–316.

    Article  Google Scholar 

  • Weber, F., 1926: Die Schließzellen. Archiv f. exper. Zellforschung 3, 101.

    Google Scholar 

  • Weber, F., 1927: Vitale Blattinfiltration. Protoplasma 1, 581–588.

    Article  Google Scholar 

  • Weber, F., 1930: Vakuolen-Kontraktion, Tropfenbildung und Aggregation in Stomata-Zellen. Protoplasma 9, 128–132.

    Article  Google Scholar 

  • Williams, W. T., and M. E. Shipton, 1950: Stomatal behaviour in buffer solutions. Physiologia Plantarum 3, 479–486.

    Article  Google Scholar 

  • Williams, W. T., 1952: Studies in Stomatal Behaviour. IL The rôle of starch in the light response of stomata. J. exper. Bot. 3, 110–127.

    Article  CAS  Google Scholar 

  • Willstätter, R., 1914: Farbstoffe der Kornblume. Liebigs Annalen 401, 189.

    Google Scholar 

  • Wood, W. M. L., 1952: Organic acid metabolism of Sedum praealtum. Journ. Exper. Bot. 3, 9, 336–355.

    Article  CAS  Google Scholar 

  • Yamaha, G., and T. Ishii, 1932: Über die Ionenwirkung auf die Chromosomen der Pollenmutterzellen von Tradescantia reflexa. Cytologia 3.

    Google Scholar 

  • Yamaha, G., 1933: Über die Wasserstoffionkonzentration und die isoelektrische Reaktion der pflanzlichen Protoplasten, insbesondere des Zellkernes und der Piastiden. Protoplasma 19, 193–212.

    Article  Google Scholar 

  • Zirkle, R. E., and W. Bloom, 1953: Irradiation of parts of individual cells. Science 117, 493–496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Springer-Verlag in Vienna

About this chapter

Cite this chapter

Small, J. (1955). The pH of Plant Cells. In: The pH of Plant Cells The pH of Animal Cells. Protoplasmatologia, vol 2 / B/2 / c. Springer, Vienna. https://doi.org/10.1007/978-3-7091-5451-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-5451-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-80386-8

  • Online ISBN: 978-3-7091-5451-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics