The pH of Plant Cells

  • James Small
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 2 / B/2 / c)


Early estimations of pH values in plant cells were based upon determinations of the electromotive force (EMF) developed between a standard hydrogen electrode and the fluid expressed from crushed tissues or liberated by cutting large algal cells such as those of Valonia, Chara or Nitella. These EMF values were then translated into terms of hydrogen ion concentration on the assumption that the numerical value of the EMF in volts depended entirely upon the concentration of hydrogen ions. Then hydrogen ion concentration measured in this way was found to act in biological reactions, mainly enzyme activity, in such a way that the apparent hydrogen ion concentration was related logarithmically to the process investigated. So Sörensen in 1909 introduced the pH scale based upon what he called the “hydrogen-ion exponent.” He defined pH+ as \({1 \over {\left( {\log {P_{{H^ + }}}} \right)}}\) (1909, p. 28, not p. 4) and pH+ became pH as a matter of typographical convenience.


Bundle Sheath Spongy Mesophyll Natural Indicator Foliage Leaf Plant Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, N. K.. 1941: Physics and Chemistry of Surfaces. 3rd Edit. O. U. P.Google Scholar
  2. Allen, R. C., 1943: Influence of aluminium on the flower color of Hydrangea macrophylla DC. Cont. Boyce Thompson Inst. 13, 221–242.Google Scholar
  3. Alvim, P. de T., 1949: Studies on the mechanism of stomatal behaviour. Amer. J. Bot. 36, 781–791.CrossRefGoogle Scholar
  4. Armstrong, J. I., 1929a: Hydrogen-ion Phenomena in Plants I. Hydrion Concentration and Buffers in the Fungi. Protoplasma 8, 222–260.Google Scholar
  5. Armstrong, J. I., 1929b: Hydrogen-ion Phenomena in Plants II. An investigation of the Buffer Complex of Sap from stems of Pelargoniumsp. Protoplasma 8, 513–343.Google Scholar
  6. Armstrong, J. I., 1929c: Hydrogen-ion Phenomena in Plants III. The acidity of certain cell-walls considered in relation to the higher fatty acids. Protoplasma 8, 508–521.Google Scholar
  7. Arrhenius, S., 1887: über die Dissociation der in Wasser gelösten Stoffe. Z. physik. Chem. 1, 631.Google Scholar
  8. Atkins, W. R. G., 1922: The H. i. c. of plant cells. Sci. Proc. Rov. Dublin Soc. (N. S.) 16, 414.Google Scholar
  9. Atkins, W. R. G., 1923: H. i. c. of the soil in relation to the flower colour of Hydrangea hortensis. Sci. Proc. R. D. S. 17, 23.Google Scholar
  10. Baird, J. G., and J. H. Prentice, 1930: Changes with age of pH of egg white and egg yolk. Analyst 55, 20.CrossRefGoogle Scholar
  11. Bartholomew, E. T., 1923: Internal decline of lemons II. Growth rate, water content, and acidity of lemons at different stages of maturity. Amer. J. Bot. 10, 117–126.CrossRefGoogle Scholar
  12. Bates, R. G., 1948: Definitions of pH scales. Chem. Rev. 42, 1–61.PubMedCrossRefGoogle Scholar
  13. Bates, R. G., 1954: Electrometric pH Determinations. Theory and Practice. 331 pp. New York and London.Google Scholar
  14. Bell, R. P., 1952: Acids and Bases. London.Google Scholar
  15. Ber, A., and Moskwa, 1951: The influence of organic solvents on the growth of plants. Experientia 7, 136–137.Google Scholar
  16. Biedermann, W., 1921: Das Koferment, Komplement der Diastase. Fermentforschung 4.Google Scholar
  17. Biedermann, W., Die organische Komponente der Diastasen. Fermentforschung 4.Google Scholar
  18. Bjerrum, N., 1923: Die Konstitution der Ampholyte, besonders der Aminosäuren und ihre Dissoziationskonstanten. Z. physik. Chem. 104, 147.Google Scholar
  19. Blank, F., 1947: The Anthocyan Pigments of Plants. Bot. Rev. 13, 241–317.CrossRefGoogle Scholar
  20. Bonner, J., 1934: The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21, 406–423.Google Scholar
  21. Bonner, J., 1950: Plant Biochemistry. New York.Google Scholar
  22. Boyle, R., 1664: Experiments and considerations touching colours. London.Google Scholar
  23. Brecht, F., 1936: Der Einfluß von Wuchsstoff-und Säurepasten auf das Wachstum von Avena- und Helianthus-Keimlingen und seine Abhängigkeit vom Sauerstoffgehalt der Luft. Jb. wiss. Bot. 82, 581.Google Scholar
  24. British Standard 1647: 1950: British Standards Institution, 24/28 Victoria Street, Westminster, London S.W. 1.Google Scholar
  25. Britton, H. T. S., 1942: Hydrogen Ions. Vols. I and II. London.Google Scholar
  26. Brooks, B. T., 1950: Catalysis and Carbonium Ions in petroleum formation. Science 111, 648–650.PubMedCrossRefGoogle Scholar
  27. Brooks, M. M., 1926: Penetration into Valonia of oxidation-reduction indicators; estimation of the rH of the sap. Proc. Soc. Exp. Biol. and Med. 23, 265.Google Scholar
  28. Brooks, M. M., 1930: The pH and rH of the sap of Valonia and the rH of its protoplasm. Protoplasma 10, 505.CrossRefGoogle Scholar
  29. Brooks, S. C., 1938: The Chemical Nature of the Plasma Membrane as revealed by Permeability. American Naturalist 72, 124–140.CrossRefGoogle Scholar
  30. Brooks, S. C., 1939: Ion Exchanges in Accumulation and Loss of Certain Ions by the Living Protoplasm of Nitella.J. cellul. a. comp. Physiol. (Am) 14, 383–401.CrossRefGoogle Scholar
  31. Brooks, S. C., and M. M. Brooks, 1941: The Permeability of Living Cells. Protoplasma-Monographien Nr. 19. Berlin.Google Scholar
  32. Bryan, O. C., 1919: Effects of different reactions on growth and nodule formation of soy beans. Soil Science 8, 227.CrossRefGoogle Scholar
  33. Buxton, B. H., 1929a: The pH value of cell sap of flowers. J. Roy. Hort. Soc. 54, 1–11.Google Scholar
  34. Buxton, B. H., and F. V. Darbishire, 1929b: On the behaviour of “anthocyanins” at varying hydrogen-ion concentrations. J. of Genetics 21, 71.CrossRefGoogle Scholar
  35. Buxton, B. H., 1932: Genetics of the primrose Primula acaulis. Jour. Genetics 25, 197–205.Google Scholar
  36. Caley, E. C., and R. L. Stoffer, 1953: Changes in concentration of hydrogen ion during precipitation reactions between neutral salt solutions. Science 118, 749–750. (18.12.1953.)CrossRefGoogle Scholar
  37. Chambers, R., and T. Kerr, 1932: Intracellular hydrion concentration studies. Jour. Cellular and Comp. Physiology 2, 105.CrossRefGoogle Scholar
  38. Chenery, E. M., 1937: The problem of the blue hydrangea. J. Roy. Hort. Soc. London 4, 568–569.Google Scholar
  39. Chenery, E. M., 1948-1950: Contributions to the bio-geochemistry of aluminium. Col. Off. (1529) 51. Agr. Res. Stn. Uganda.Google Scholar
  40. Clark, L., 1917: Acidity of marine algae. Pujet Sound Marine Sta. Publ. 1, 22.Google Scholar
  41. Clark, W. M., 1928: The Determination of Hydrogen. Ions. 3rd Edit. London and Philadelphia: also 1st edit. 1920 and 2nd edit. 1922–1927.Google Scholar
  42. Clevenger, C. B., 1919: H. i. c. of plant juices II. Soil Scence 8, 227.CrossRefGoogle Scholar
  43. Colla, S., 1928: Nota sulla azione della conc. d. H. i. sulle correnti protoplasmatiche. Protoplasma 5, 179.CrossRefGoogle Scholar
  44. Cooke, M. P., 1952: Some aspects of stomatal physiology. Thesis. Q. U. B.Google Scholar
  45. Crozier, W. J., 1916: Cell penetration by acids. Jour. Biol. Chem. 26, 217, 235.Google Scholar
  46. Crozier, W. J., 1919: Intracellular acidity in Valonia. Journ. Gen. Phys. 1, 581.CrossRefGoogle Scholar
  47. Czapek, F., 1922-1925: Biochemie der Pflanzen. Dritte Aufl. Jena.Google Scholar
  48. Denny, F. E., and W. J. Youden, 1927: Acidification of unbuffered salt solutions by plant tissue Amer. J. Bot. 14, 395.CrossRefGoogle Scholar
  49. Diehl, J. M., C. J. Gorker, G. Van Iterson and A. Kleinhoonte, 1939: The influence of growth hormone on hypocotyls of Helianthws and the structure of their cell walls. Rec. d. Trav. Bot. Néerlandais 36, 709–798.Google Scholar
  50. Dixon, H. H., and T. A. Bennet-Clark, 1930: The Stomatic Control of Transpiration. Nature 126, 601.CrossRefGoogle Scholar
  51. Doyle, J., and P. Clinch, 1928: Further notes on the metabolism of conifer leaves. Proc. R. I. A. 38, B, 116.Google Scholar
  52. Dustman, R. B., 1925: Inherent factors related to absorption of mineral elements by plants. Bot. Baz. 79, 233.Google Scholar
  53. Gaudichaud, M., 1848: Des sucs séveux acides, et de quelques excrétions alcalines. Compt. Rend. 27, 37.Google Scholar
  54. Gustafson, F. G., 1924: Total acidity compared with actual acidity of plant juices. Amer. J. Bot. 11, 1–6.CrossRefGoogle Scholar
  55. Gustafson, F. G., 1925: Diurnal changes in the acidity of Bryophyllum calycinum. J. Gen. Physiol. 7, 719.PubMedCrossRefGoogle Scholar
  56. Gustafson, F. G., 1927: Chemical Analysis of Tomato Fruits. Papers Mich. Acad. Sci. Arts and Letters 8, 121.Google Scholar
  57. Guthrie, J. D., 1934: Metabolism of citric, sulphuric and nitric acid in the potato tuber. Cont. Boyce Thompson Inst. 6, 247–268.Google Scholar
  58. Gutstein, M., 1932: Bestimmung der H-Konzentration in der lebenden Hefe-und Bakterienzelle. Protoplasma 17, 454–470.CrossRefGoogle Scholar
  59. Haas, A. R. C., 1916 (a): The acidity of plant cells as shown by natural indicators. J. Biol. Chem. 27, 232.Google Scholar
  60. Haas, A. R. C., 1916 (b): A simple and rapid method of studying respiration by the detection of exceedingly minute quantities of carbon dioxide. Science 44, 105.PubMedCrossRefGoogle Scholar
  61. Haas, A. R. C., 1920: Studies on the reaction of plant juices. Soil Science 9. 341.CrossRefGoogle Scholar
  62. Haas, A. R. C., 1942: Lime-induced chlorosis in relation to Soil Factors. Plant Physiology 17, 27–51.PubMedCrossRefGoogle Scholar
  63. Heath, O. V. S., 1949: Studies in stomatal behaviour. II. The role of starch in the light response of stomati. New Phytologist 48, 186–211.Google Scholar
  64. Heath, O. V. S., and F. L. Milthorpe, 1950: Studies in Stomatal Behaviour. V. The role of carbon dioxide in the light response of stomata. Jour. Experimental Bot. 1, 29–62, 227-243.CrossRefGoogle Scholar
  65. Heilbrunn, L. V., 1928: The Colloid Chemistry of Protoplasm. Protoplasma Monographs No. 1. Berlin.Google Scholar
  66. Heilbrunn, L. V., 1952: An Outline of General Physiology. 3rd Edit. Philadelphia and London.Google Scholar
  67. Hempel, J., 1917: Buffer processes in the metabolism of succulent plants. Compt. Rend. Lab. Carlberg 13, 1.Google Scholar
  68. Herrmann, H., 1879: Handbuch der PhysiologicGoogle Scholar
  69. Heyn, A. N. J., 1940: The Physiology of Cell Elongation. Botan. Rev. 6, 515–574.CrossRefGoogle Scholar
  70. Heyne, B., 1815: On the desoxidation of the leaves of Cotyledon calycina. Trans. Linn. Soc. 2., 213.Google Scholar
  71. Hurd, A. M., 1923: Acidity of corn and its relation to vegetative size. Jour. Agric. Res. 25, 11.Google Scholar
  72. Hurd, A. M., 1924: The course of acidity changes during the growth-period of wheat. Jour. Agric. Res. 27, 725.Google Scholar
  73. Hurd-Karrer, A. M., 1928: Changes in the buffer system of the wheat phant. Plant Physiology 3, 131–153.PubMedCrossRefGoogle Scholar
  74. Iljin, W. S., 1914: Die Regulierung der Spaltöffnungen im Zusammenhange mit der Veränderung des osmotischen Druckes. Beih. Bot. Zentralb. 32, 15–35.Google Scholar
  75. Iljin, W. S., 1915: Die Regulierung der Spalt öffnungen. Beih. Bot. Zentralb. 32, 1. Abt.Google Scholar
  76. Iljin, W. S., 1922 (a): Wirkung der Kationen von Salzen auf den Zerfall und die Bildung von Stärke in der Pflanze. Biochem. Zeitschr. 132.Google Scholar
  77. Iljin, W. S., 1922 (b): Synthese und Hydrolyse von Stärke. Biochem. Zeitschr. 132.Google Scholar
  78. Iljin, W. S., 1922 (c): Physiologischer Pflanzenschutz. Biochem. Zeitschr. 132.Google Scholar
  79. Iljin, W. S., 1928: Die Durchlässigkeit der Protoplasmas. Protoplasma 3, 558.CrossRefGoogle Scholar
  80. Ingold, C. T., and J. Small, 1928: H. i. c. of plant tissues. IX. Improved technique for the R. I. M. Protoplasma 3, 458.CrossRefGoogle Scholar
  81. Ingold, C. T., 1929: H. i. c. of plant tissues. X. Buffers of the potato tuber. Protoplasma 6, 51.CrossRefGoogle Scholar
  82. Ingold, C. T., 1930 (a): Hydrogen-ion Phenomena in Plants. IV. Buffers of Potato (tuber and leaf). Protoplasma 9, 441–446.CrossRefGoogle Scholar
  83. Ingold, C. T., 1930 (b): Hydrogen-ion Phenomena in Plants. V. The buffer systems of plant juices. Protoplasma 9, 447–455.CrossRefGoogle Scholar
  84. Ingold, C. T., 1930 (c): Hydrogen-ion Phenomena in Plants. VI. Apparatus for measuring the effect of carbon dioxide on the reaction of plant sap. Protoplasma 9, 456–458.CrossRefGoogle Scholar
  85. Irwin, M., 1919: Comparative studies on respiration. VI. Increased production of carbon dioxide accompanied by decrease of acidity. J. Gen. Physiol. 1, 399.PubMedCrossRefGoogle Scholar
  86. Jackson, T., 1947: The buffer complex in the sap of some plants of economic importance. Thesis. Q. U. B.Google Scholar
  87. Jacobs, M. H., 1920: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Amer. J. Physiol. 53, 457.Google Scholar
  88. Jacobs, M. H., 1922: The influence of ammonium salts on cell reaction. Jour. Gen. Physiol. 5, 181.CrossRefGoogle Scholar
  89. Kappen, H., 1918: Untersuchungen über Wurzelsäfte. Landw. Vers. Stat. 91, 1–40.Google Scholar
  90. Kappen, and M. Zapfe, 1919: Die Azidität der Pflanzensäfte unter dem Einfluß einer Kalkdüngung. Landw. Vers. Stat. 93, 135.Google Scholar
  91. Kiesel, A., 1930: Chemie des Protoplasmas. Protoplasma-Monographien 4. Berlin.Google Scholar
  92. Kisselew, N., 1925: Veränderung der Durchlässigkeit des Protoplasmas der Schließzellen im Zusammenhange mit stomatären Bewegungen. Beih. Bot. Zentralbl. 41, 287–308.Google Scholar
  93. Kolthoff, I. M. trans. N. H. Furman, 1926: Indicators. New York and LondonGoogle Scholar
  94. Kopaczewski, W., 1926: Les Ions d’Hydrogène. Paris.Google Scholar
  95. Kopaczewski, W., 1933: La couche limitante cellulaire. Protoplasma 20, 407–439.CrossRefGoogle Scholar
  96. Kraus, G., 1883: Die Acidität des Zellsaftes. Abhandl. Naturf. Ges. Halle 16, 154.Google Scholar
  97. Krotkof, G., D. G. Wilson, and R. W. Street, 1951: Acid metabolism of Mcintosh Apples during their development on the tree and in cold storage. Canad. Journ. Bot. 29, 79–90.CrossRefGoogle Scholar
  98. Kuwada, Y., and T. Sakamura, 1926: A contribution to the colloid chemical and morphological study of chromosomes. Protoplasma 1, 239.CrossRefGoogle Scholar
  99. Lapicque, L., 1921: Influence des acides et des bases sur une algae d’eau douce. Compt. rend. soc. biol. 84, 493.Google Scholar
  100. Lapicque, L., 1922: Mécanisme des échanges autre la cellule et le milieu ambiant. C. R. Ac. Sci. 174, 1491.Google Scholar
  101. Lapicque, L., and M. Kergomard, 1923: Acidification par l’asphyxie chez les Spirogyres. C. R. Soc. Biol. 88.Google Scholar
  102. Letter Circular LC 993, 1950: United States National Bureau of Standards, Department of Commerce, Washington, 25. D. C., U. S. A.Google Scholar
  103. Lewis, G. N., 1912: The activity of the ions and the degrees of dissociation of strong electrolytes. J. Am. Chem. Soc. 34, 1631.CrossRefGoogle Scholar
  104. Lillie, R. S., 1909: On the connection between changes of permeability and stimulation and on the significance of changes in permeability to carbon dioxide. Amer. Jour. Physiol. 24, 14.Google Scholar
  105. Limperos, G., and K. E. Ranta, 1953: A rapid screening test for determination of the Cholinesterase activity of human blood. Science 117, 453–455.PubMedCrossRefGoogle Scholar
  106. Lindner, R. C., and C. P. Harley, 1944: Nutrient interrelations in lime-induced chlorosis. Plant Physiology 19, 420–439.PubMedCrossRefGoogle Scholar
  107. Lloyd, F. E., and V. Ulehla, 1926: The rôle of the wall in the living cell. Trans. Roy. Soc. Canada 20, 45.Google Scholar
  108. Loehwing, W. F., 1928: Calcium, potassium and iron balance in certain crop plants in relation to their metabolism. Plant Physiology 3, 261.PubMedCrossRefGoogle Scholar
  109. Loehwing, W. F., 1930: Effects of insolation and soil characteristics on tissue fluid reaction in wheat. Plant Physiology 5, 293–305.PubMedCrossRefGoogle Scholar
  110. Marconi Instruments, Ltd., 1951: Hydrogen Ions — pH Measurement with particular reference to the Glass Electrode. St. Albans.Google Scholar
  111. Martin, S. H., M. W. Rea and J. Small, 1926: The Reaction of plant tissues. Report Oxford (94th) meeting Brit. Assoc. Adv. Sci.Google Scholar
  112. Martin, S. H., 1927 (a): H. i. c. of plant tissues. III. Tissues of Helianthus annuus. Protoplasma 1, 497.CrossRefGoogle Scholar
  113. Martin, S. H., 1927 (b): H. i. c of plant tissues. IV. Buffers of sunflower hypocotyl. Protoplasma 1, 522CrossRefGoogle Scholar
  114. Martin, S. H., 1928: H. i. c. of plant tissues. III. Buffers of sunflower stem and root. Protoplasma 3, 273.CrossRefGoogle Scholar
  115. Martin, S. H., VIII. Buffers of bean stem and root. Protoplasma 3, 282.Google Scholar
  116. Mayer, A., 1875: über die Bedeutung der organischen Säuren in den Pflanzen. Landw. Versuchsstationen 18, 428.Google Scholar
  117. Mayer, A., 1878: über die Sauerstoffausscheidung einiger Crassulaceen. Landw. Versuchsstationen 21, 277.Google Scholar
  118. Mcclendon, J. F., 1914: On the electric charge of the protoplasm and other substances in living cells. Zschr. f. physik.-chem. Biol. 1, 159.Google Scholar
  119. Michaelis, L. (Trans. W. A. Perlweig), 1926: Hydrogen Ion Concentration. Baltimore.Google Scholar
  120. Miller, L. P., 1931: The effect of treatments with ethylene chlorhydrin on the pH of the expressed juice of potato tubers. Contr. Boyce Thompson Inst. 3, 321–336.Google Scholar
  121. Milovidov, P. F., 1949: Physik und Chemie des Zellkernes. Erster Teil. Protoplasma-Monographien, Band 20. Berlin.Google Scholar
  122. Mislowitzer, E., 1928: Die Bestimmung der W. i. k. von Flüssigkeiten. Berlin.Google Scholar
  123. Newton, J. D., 1923: A comparison of the absorption of inorganic elements and the buffer systems of legumes and non-legumes. Soil Science 15, 181.CrossRefGoogle Scholar
  124. Nutman, F. J., 1937 (a): Studies of the physiology of Coffea arabica. I. Photosynthesis in coffee leaves under natural conditions. Ann. Bot. N. S. 1, 3, 353–367.Google Scholar
  125. Nutman, F. J., 1937 (b): Studies of the physiology of Coffea arabica. II Stomatal movements in relation to photosynthesis. Ann. Bot. N. S. 1, 681.Google Scholar
  126. Nutman, F. J., 1938: Stomatal movement and epidermal water-content. Nature 141, 608.CrossRefGoogle Scholar
  127. Odén, S., 1916: Zur Frage der Azidität der Zellmembranen. Ber. d. deut. bot. Ge-sellsch. 34, 648.Google Scholar
  128. Olsen, C., 1935: Iron absorption and chlorosis in green plants. C. R. Lab. Carls-berg 21, No. 3, 15–52.Google Scholar
  129. Oserkowsky, J., 1932: H. i. c. and iron content of tracheal sap from green and chlorotic pear trees. Plant Physiology 7, 253.PubMedCrossRefGoogle Scholar
  130. National Bureau of Standards, U.S.A., 1950: Standardisation of pH measurements made with the glass electrode. Letter Circular. LC 993 (supersedes LC 933).Google Scholar
  131. Palitzsch, S., 1916: Sur l’emploi de solution de borax et d’acide borique dans la détermination colorimétrique de la concentration en ions hydrogène de l’eau de mer. C. R. Lab. Carlsberg 11, 199–211.Google Scholar
  132. Pantin, C. F. A., 1923: Determination of the pH of microscopic bodies. Nature 111, 81.CrossRefGoogle Scholar
  133. Pfeiffer, H. H., 1925 (a): Eine Methode zur kolorimetrischen Bestimmung der W. i. k. in pflanzlichen Gewebeschnitten ohne Anwendung von Moderatoren. Zeitschr. f. wiss. Mikroskopie 42, 396–414.Google Scholar
  134. Pfeiffer, H. H., 1925 (b): über die W. i. k. als Determinationsfaktor ohysiologischen Gewebe-geschehens in der sekundären Rinde der Pflanze. New Phytologist 24, 65.CrossRefGoogle Scholar
  135. Pfeiffer, H. H., 1926: Der gegenwärtige Stand der kolorimetrischen Azidimetrie in der Gewebephysiologie. Protoplasma 1, 434–465.CrossRefGoogle Scholar
  136. Pfeiffer, H. H., 1927: über Unterschiede im Chemismus der Trennungsgewebe bei periodischem und Frostlaubfall usw. Botanisches Archiv (Mez) 18, 319.Google Scholar
  137. Pfeiffer, H. H., 1940: Experimentelle Cytologie. Chronica Botanica Co.Google Scholar
  138. Priestley, J. H., 1924: The fundamental fat metabolism of the plant. New Phytologist 23, 1.CrossRefGoogle Scholar
  139. Pucher, G. W., H. B. Vickery and C. C. Sherman, 1946: The determination of citric acid in biological material. Jour. Biol. Chem. 113, 235–245.Google Scholar
  140. Pucher, G. W., et al., 1948: Studies in the metabolism of Crassulacean plants: Diurnal variation in organic acids and starch in excised leaves of Bryophyllum calycinum.Plant Physiology 24, 610.CrossRefGoogle Scholar
  141. Rea, M. W., and J. Small, 1926: The H. i. c of plant tissues. II. Flowering and other stems. Protoplasma 1, 3, 334.CrossRefGoogle Scholar
  142. Rea, M. W., 1927 (a): The H. i. c of plant tissues. V. The tissues of Vicia faba. Protoplasma 2, 1, 45.CrossRefGoogle Scholar
  143. Rea, M. W., 1927 (b): The H. i. c of plant tissues. VI. Stem tissue reactions throughout the year. Protoplasma 2, 3, 428.CrossRefGoogle Scholar
  144. Rediske, J. H., and G. Biddulph, 1953: The absorption and translocation of iron. Plant Physiology 28, 4, 576–593.PubMedCrossRefGoogle Scholar
  145. Reiss, P., 1926: Le pH intérieur cellulaire. Paris.Google Scholar
  146. Ricci, J. E., 1952: Hydrogen Ion Concentration. Princeton.Google Scholar
  147. Richards, T. W., 1898: The relation of the taste of acids to their degree of dissociation. Am. Chem. J. 20, 121.CrossRefGoogle Scholar
  148. Rietsema, J., 1950: Action and penetration of growth substances with special reference to Avena coleoptile sections. Meded. Bot. Lab. Utrecht 1950, No. 1.Google Scholar
  149. Rijven, A. H. G. C., 1952: In vitro studies on the embryo of Capsella bursa-pastoris. Meded. Bot. Lab. Utrecht 1952, No. 1.Google Scholar
  150. Roberts, O., and J. Doyle, 1938: The pH of conifer leaves in relation to syste-maty. Sci. Proc. Roy. Dubl. Soc. 21, 655–674.Google Scholar
  151. Rogers, C. H., and J. W. Shive, 1932: Factors affecting the distribution of iron in plants. Plant Physiology 7, 227.PubMedCrossRefGoogle Scholar
  152. Rohde, K., 1917: Untersuchungen über den Einfluß des freien H-Ions auf den Vorgang der vitalen Färbung. Pflügers Archiv 168, 411.CrossRefGoogle Scholar
  153. Sachs, J., 1862: über saure, alkalische und neutrale Reaktion der Säfte lebender Pflanzenzellen. Bot. Zeitung 20, 264.Google Scholar
  154. Sakamura, T., 1927: Chromosomenforschung an frischem Material. Protoplasma 1, 537.CrossRefGoogle Scholar
  155. Samuel, G., 1927: On the shot-hole disease caused by Clasterosporium carpo-philum and on the “Shot Hole” Effect. Ann. Bot. 41, 375.Google Scholar
  156. Sayre, J. D., 1926: Physiology of Stomata of Rumex patientia. Ohio Journ. of Science 26, 233.Google Scholar
  157. Scarth, G. W., 1926: The influence of h. i. c on the turgor and movement of plant cells with special reference to stomatal behaviour. Proc. Internat. Congress Plant Sci., Ithaca. Publ. 1929, 1151–1162.Google Scholar
  158. Scarth, G. W., 1932: Mechanism of the action of light and other factors on stomatal movement. Plant Physiology 7, 481.PubMedCrossRefGoogle Scholar
  159. Scarth, G. W., J. Whyte and A. Brown, 1933: On the cause of night opening of stomata. Trans. Roy. Soc. Canada 5, 115.Google Scholar
  160. Scarth, G. W., and M. Shaw 1951 (a): Stomatal movement and photosynthesis in Pelargonium.I. Effect of light and carbon dioxide. Plant Physiology 26, 207.Google Scholar
  161. Scarth, G. W., 1951 (b): II. Effects of water deficit and of chloroform: photosynthesis in guard cells. Plant Physiology 26, 581.PubMedCrossRefGoogle Scholar
  162. Schaede, R., 1924: über die Reaktion des lebenden Plasmas. Ber. deutsch. Bot. Ges. 42, 219.Google Scholar
  163. Shive, J. W., and R. A. Ingalls, 1931: Relation of H-ion concentration of tissue fluids to the distribution of iron in plants. Plant Physiology 6, 103–125.PubMedCrossRefGoogle Scholar
  164. Schley, E. O., 1913: Chemical and physical changes in geotropic stimulation and response. Bot. Gaz. 56, 480.CrossRefGoogle Scholar
  165. Schley, E. O., 1920: Geo-presentation and Geo-reaction. Bot. Gaz. 70, 69.CrossRefGoogle Scholar
  166. Schwarz, F., 1892: Die morphologische und chemische Zusammensetzung des Protoplasmas. Beitr. Biol. Pflanzen 5.Google Scholar
  167. Scott-Moncrieff, R., 1932: A note on the anthocyanin pigments of the primrose Primula acaulis. Jour. Genetics 25, 206.CrossRefGoogle Scholar
  168. Scott-Moncrieff, R., 1936: A biochemical survey of some Mendelian factors for flower colour. Jour. Genetics 32, 117–170.CrossRefGoogle Scholar
  169. Seifriz, W., and M. Zetzmann, 1935: A slime mould pigment as indicator of acidity. Protoplasma 23, 175–179.CrossRefGoogle Scholar
  170. Seifriz, W., 1936: Protoplasm. New York.Google Scholar
  171. Sideris, C. P., and H. Y. Young, 1944: Effects of iron on chlorophyllous pigments, ascorbic acid. acidity and carbohydrates of Ananas comosus (L.) Merr. Plant Physiology 19, 52–75.PubMedCrossRefGoogle Scholar
  172. Sinke, N., 1937: An experimental study on the structure of living nuclei in the resting stage. Cytologia, Fujii Jub. Vol.Google Scholar
  173. Sinke, N., 1939: Experimental studies of cell-nuclei. Mem. Coll. Sci., Kyoto Imp. Univ. B, 15. No. 1, 1–116.Google Scholar
  174. Small, J., 1918: Changes of electrical conductivity under geotropic stimulation. Proc. Roy. Soc. Lond., B. 90, 349.CrossRefGoogle Scholar
  175. Small, J., 1920: A theory of geotropism. New Phytologist 19, 49.CrossRefGoogle Scholar
  176. Small, J., 1923: Propagation by cuttings in acidic media. Gardeners’ Chronicle 73, 244.Google Scholar
  177. Small, J., 1926: H. i. c. of plant tissues. I. The method. Protoplasma 1, 324–333.CrossRefGoogle Scholar
  178. Small, J., S. H. Martin And M. W. Rea, 1926: The reaction of plant tissues. Rep. Brit. Assoc, Oxford, p. 410.Google Scholar
  179. Small, J., and M. W. Rea, 1926-27: H. i. c. of plant tissues. II, V, VI. Protoplasma 1 and 2 (see REA).Google Scholar
  180. Small, J., and C. T. Ingold, 1928: H. i. c. of plant tissues. IX. Improved technique for the R. I. M. Protoplasma 3, 458.Google Scholar
  181. Small, J., 1929: Hydrogen-ion concentration of plant cells and tissues. Protoplasma Monographs, No. 2. Berlin.Google Scholar
  182. Small, J., and K. M. Maxwell, 1939: pH phenomena in relation to stomatal opening. I. Coffea arabica and some other species. Protoplasma 32, 272.CrossRefGoogle Scholar
  183. Small, J., M. I. Clarke and J. Crosbie-Baird, 1942: pH phenomena in relation to stomatal opening. II-V. Proc. Roy. Soc. Edin. 61, 233–266.Google Scholar
  184. Small, J., 1946: pH and Plants. London and New York.Google Scholar
  185. Small, J., and T. Jackson, 1949 (a): Relative buffer-index values for root saps of some crop plants. Journ. Agric. Sci. 38, 343–344. 1949 (b): Buffer index values in relation to soil-pH tolerances. Plant Physiology 24, 75-83.CrossRefGoogle Scholar
  186. Small, J., 1950: A note on sugar and starch in stomatal guard-cells. New Phytol. 49, 274–276.CrossRefGoogle Scholar
  187. Small, J., 1952: The new outlook on pH. Protoplasma 41, 273–276.CrossRefGoogle Scholar
  188. Small, J., 1954: Modern aspects of pH. London.Google Scholar
  189. Small, J., 1955: Estimation of pH values. Subsection F of Section II. General methods, in “Modern methods of Plant Analysis.” Springer, Berlin (in the press).Google Scholar
  190. Smith, E. P., 1923: Effects of anaesthetics on plants. Nature 112, 654.CrossRefGoogle Scholar
  191. Smith, E. P., 1924: The effect of general anaesthetics on the respiration of cereals. Ann. Bot. 38, 261.Google Scholar
  192. Smith, E. P., 1928: The reaction of the medium in relation to root formation in Coleus. Trans. Bot. Soc. Edin. 30, 53–58.CrossRefGoogle Scholar
  193. Smith, E. P., 1931: Flower colours as natural indicators. Bot. Soc. Edin. 30, 230–238.CrossRefGoogle Scholar
  194. Smith, E. P., 1933: The calibration of flower colour indicators. Protoplasma 18, 112–124.CrossRefGoogle Scholar
  195. Sörensen, S. P. H., 1909: Études enzymatiques. II Sur la mesure et l’importance de la concentration des ions hydrogène dans les réactions enzymatiques. Compt. Rend. Lab. Carlsberg 8, 1 (note définition of pH on p. 28, not that on p. 4).Google Scholar
  196. Spek, J., and R. Chambers, 1933: Das Problem der Reaktion des Protoplasmas. Protoplasma 20, 376–406.CrossRefGoogle Scholar
  197. Stanfield, J. F., 1937: Certain physico-chemical aspects of sexual differentiation in Lychnis dioica. Amer. J. Bot. 24, 710–719.CrossRefGoogle Scholar
  198. Stanfield, J. F., 1944: Chemical composition of roots and tops of dioecious Lychnis in vegetative and flowering phases of growth. Plant Physiol. 19, 377–383.PubMedCrossRefGoogle Scholar
  199. Thoday, D., and H. Evans, 1931: Buffer systems in Kleinia articulata. Protoplasma 14, 64–74.CrossRefGoogle Scholar
  200. Thoday, D., and H. Evans, 1932: The distribution of calcium and phosphate in the tissues of Kleinia articulata and some other plants. Ann. Bot. 46, 781–806.Google Scholar
  201. Thoday, D., and H. Evans, 1933: The distribution of some solutes in the tissues of Kleinia articulata.Ann. Bot. 47, 1–20.Google Scholar
  202. Thoday, D., and M. W. P. Jackson, 1939 (a): The distribution of calcium malate and other solutes in the stems and leaves of succulent Compositae. Ann. Bot. N. S. 3, 1–26.Google Scholar
  203. Thoday, D., and K. M. Jones, 1939 (b): Malic acid and respiration during starvation in Kleinia articulata. Ann. Bot. N. S. 3, 677–698.Google Scholar
  204. Thomas, M., 1951 (a): Vegetable acids in higher plants. Endeavour 10, 160–165.Google Scholar
  205. Thomas, M., 1951 (b): Carbon dioxide fixation and acid synthesis in Crassulacean acid metabolism. Symposia of Soc. for Exp. Biology 5, 72–93.Google Scholar
  206. Tomicek, O., and J. Feldman, 1934: The determination of acidity in non-aqueous solutions. Coll. Czechoslov. Chem. Comm. 6. See Chem. Abst. 1935, 29, 704 for oils and solutions: 6171 for more solutions.Google Scholar
  207. Truog, E., 1918: Soil acidity. I. Its relation to the growth of plants. Soil Science 5, 169–195.CrossRefGoogle Scholar
  208. Truog, E., and M. R. Meacham, 1919: Soil acidity. II. Its relation to the acidity of the plant juice. Soil Science 7, 469.CrossRefGoogle Scholar
  209. Ülehla, V., and V. Moravek, 1922: Über die Wirkung von Säuren und Salzen auf Basidiobolus ranarum Eid. Ber. deutsch. bot. Ges. 40, 9.Google Scholar
  210. Ülehla, V., 1928: Geweberegulation bei Sukkulenten. Protoplasma 3, 469.CrossRefGoogle Scholar
  211. Van Santen, A. M. A., 1938: Influence of hydrogen-ion concentration on the growth rate of the Avena coleoptile. Proc. Konin. Neder. Akad. v. Weten. 41, 513–523.Google Scholar
  212. Van Santen, 1940: Groei, Groeistof en pH. Thesis. Utrecht.Google Scholar
  213. Van Slyke, D. D., 1922: On the measurements of buffer values and on the relationship of buffer-value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. Jour. Biol. Chem. 52, 525.Google Scholar
  214. Vickery, H. B., 1952: The behaviour of isocitric acid in excised leaves of Bryophyllum calycinum during culture in alternating light and darkness. Plant Physiology 27, 9.PubMedCrossRefGoogle Scholar
  215. Walbum, L. E., 1913: Sur l’emploi de l’extrait de choux rouge comme indicateur dans la mesure colorimétrique de la conc. d. ions hydrogène. C. R. Lab. Carlsberg 10, 227.Google Scholar
  216. Walling, C., 1950: The acid strength of surfaces. J. Amer. Chem. Soc. 72, 1164–1168.CrossRefGoogle Scholar
  217. Watson, G. N., 1913: The juice of the blueberry as an indicator. Am. J. Pharm. 85, 246.Google Scholar
  218. Weber, F., 1923 (a): Zur Physiologie der Spaltöffnungsbewegung. Österr. botan. Zeitschr. 1923, No. 1-3, 43–57.Google Scholar
  219. Weber, F., 1923 (b): Enzymatische Regulation der Spaltöffnungsbewegung. Die Naturwiss., Wien, 2, 17, 309–316.CrossRefGoogle Scholar
  220. Weber, F., 1926: Die Schließzellen. Archiv f. exper. Zellforschung 3, 101.Google Scholar
  221. Weber, F., 1927: Vitale Blattinfiltration. Protoplasma 1, 581–588.CrossRefGoogle Scholar
  222. Weber, F., 1930: Vakuolen-Kontraktion, Tropfenbildung und Aggregation in Stomata-Zellen. Protoplasma 9, 128–132.CrossRefGoogle Scholar
  223. Williams, W. T., and M. E. Shipton, 1950: Stomatal behaviour in buffer solutions. Physiologia Plantarum 3, 479–486.CrossRefGoogle Scholar
  224. Williams, W. T., 1952: Studies in Stomatal Behaviour. IL The rôle of starch in the light response of stomata. J. exper. Bot. 3, 110–127.CrossRefGoogle Scholar
  225. Willstätter, R., 1914: Farbstoffe der Kornblume. Liebigs Annalen 401, 189.Google Scholar
  226. Wood, W. M. L., 1952: Organic acid metabolism of Sedum praealtum. Journ. Exper. Bot. 3, 9, 336–355.CrossRefGoogle Scholar
  227. Yamaha, G., and T. Ishii, 1932: Über die Ionenwirkung auf die Chromosomen der Pollenmutterzellen von Tradescantia reflexa. Cytologia 3.Google Scholar
  228. Yamaha, G., 1933: Über die Wasserstoffionkonzentration und die isoelektrische Reaktion der pflanzlichen Protoplasten, insbesondere des Zellkernes und der Piastiden. Protoplasma 19, 193–212.CrossRefGoogle Scholar
  229. Zirkle, R. E., and W. Bloom, 1953: Irradiation of parts of individual cells. Science 117, 493–496.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag in Vienna 1955

Authors and Affiliations

  • James Small
    • 1
  1. 1.Department of BotanyThe Queen’s University of BelfastUK

Personalised recommendations