Tension at the Cell Surface

  • E. Newton Harvey
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 2 / E / 4,5)


Although phenomena connected with surface tension must have been noticed by many observers since the study of nature began, important scientific observations date from the latter part of the 17th century. The subject was considered by Robert Boyle, whose contribution to the Royal Society in 1676 was entitled: “New experiments about the Superficial Figures of Fluids, especially of Liquors contiguous to other Liquors.” In this paper he stated that Mr. Hooke 1 had already enquired why water rises “in narrow pipes” and Boyle expressed his own opinion that the concave figure of the surface (the meniscus) was determined by the contiguous fluid, the air. He endeavored to prove his point by placing another fluid, turpentine, on the water surface in a small tube, when the concavity immediately decreased and the surfaces of contact became nearly plane.


Surface Tension Interfacial Tension Centrifugal Force Surface Force Protoplasmic Streaming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, J., 1900: Chemotropische Bewegung eines Quecksilbertropfens. Pflügers Arch. 80, 628–657.CrossRefGoogle Scholar
  2. Berthold, G. D. W., 1886: Studien über Protoplasmamechanik. Leipzig.Google Scholar
  3. BÜTSCHLI, O., 1876: Studien über die ersten Entwicklungsvorgänge der Eizelle, die Zellteilungsvorgänge der Eizelle, die Zellteilung und die Konjugation der Infusorien. Abh. Senckenberg. naturf. Ges., Erankf. M. 10, 232–452.Google Scholar
  4. BÜTSCHLI, O., 1889: Versuche zur Nachahmung von Protoplasmastructuren. Dtsch. Natf. Tagebl. 1889, 266–267; also Quart. J. microsc. Sci. 31, 99–103, 1890, a letter to E. R. LANCASTER.Google Scholar
  5. BÜTSCHLI, O., 1894: Investigations on Microscopic Foams and on Protoplasm. London, 379 pp., translated by E. A. MINCHIN from the German ed. 1892.Google Scholar
  6. BÜTSCHLI, O., 1900: Bemerkungen über Plasmaströmungen bei der Zelltheilung. Arch. Entw. 10, 52–57.Google Scholar
  7. Chamrers, R., 1935: Studies on the physical properties of the plasma membrane. Biol. Bull. 69, 331 (abstract).Google Scholar
  8. Chamrers, R., 1940: The relation of extraneous coats to the organization and permeability of cellular membranes. Cold Spring Harbor Symposia 8, 144–153.CrossRefGoogle Scholar
  9. Chamrers, R., 1944: Some physical properties of protoplasm. In J. Alexander’s Colloid Chemistry, New York. Vol. 5, pp. 864–875.Google Scholar
  10. Chamrers, R., and M. J. Kopac, 1937: The Coalescence of living cells with oil drops. I. Arbacia eggs immersed in sea water. J. cellul. a. comp. Physiol. (Am.) 9, 331–344.CrossRefGoogle Scholar
  11. Clowes, G. H. A., 1916: Protoplasmic equilibrium. J. Phys. Chem. 20, 407–451.CrossRefGoogle Scholar
  12. Cole, K. S., 1932: Surface forces of the Arbacia egg. J. cellul. a. comp. Physiol. (Am.) 1, 1–9.CrossRefGoogle Scholar
  13. Cole, K. S., and E. Michaelis, 1932: Surface forces of fertilized Arbacia eggs. J. cellul. a. comp. Physiol. (Am.) 2, 121–126.CrossRefGoogle Scholar
  14. Costello, D.P., 1935: Fertilization membranes of strongly centrifuged Asterias eggs. Physiol. Zool. 8, 65–72.Google Scholar
  15. Czapek, F., 1911: Methode der direkten Bestimmung der Oberflächenspannung der Plasmahaut der Pflanzenzellen. Jena; also in Ber. dtsch. Bot. Ges. 28, 159–169 and 480–487, 1910.Google Scholar
  16. Danielli, J.F., 1936: Some properties of lipoid films in relation to the structure of the plasma membrane. J. cellul. a. comp. Physiol. (Am.) 7, 393–407.CrossRefGoogle Scholar
  17. Danielli, J. F., 1942, 1952: The cell surface and cell physiology, in: Cytology and Cell Physiology. Ed. By G. H. Bourne, Oxford.Google Scholar
  18. Danielli, J. F., and H. Davson, 1935: A contribution to the theory of permeability of thin films. J. cellul. a. comp. Physiol. (Am.) 5, 495–508.CrossRefGoogle Scholar
  19. Danielli, J. F., 1942: The Permeability of Natural Membranes. Cambridge.Google Scholar
  20. Danielli, J. F., and E. N. Harvey, 1935: The tension at the surface of mackerel egg oil, with remarks on the nature of the cell surface. J. cellul. a. comp. Physiol. (Am.) 5, 483–494.CrossRefGoogle Scholar
  21. Dawson, J. A., and M. Belkin, 1929: The digestion of oils by Amoeba proteus. Biol. Bull. 56, 80–86.CrossRefGoogle Scholar
  22. DE Bruyn, P. P. H., 1947: Theories of Amoeboid movement. Quart. Rev. Biol. (Am.) 22, 1–24.CrossRefGoogle Scholar
  23. DE Ruiter, L., and H. G. Bungenberg DE Jong, 1947: The interfacial tension of gum arabic-gelatine complex coacervates and their equilibrium liquids. Proc. K. Nederl. Akad. van Wetensch. Amsterdam 50, 836–848.Google Scholar
  24. DE Vries, G. A., 1947: The influence of lithium chloride and calcium chloride on viscosity and tension at the surface of uncleaved eggs of Limnaea stagnalis, 2. Proc. K. Nederl. Akad. van Wetensch. Amsterdam 50 (10), 1335–1442.Google Scholar
  25. Dorsey, W. E., 1928: A new equation for the determination of surface tension from the form of a sessile drop or bubble. J. Wash. Acad. Sci. 18, 505–509.Google Scholar
  26. Dorsey, W. E., 1929: The investigation of surface tension and associated phenomena. Bull. Nat. Res. Conn., No. 69, 56–118.Google Scholar
  27. Englemann, W., 1869: Beiträge zur Physiologie des Protoplasmas. Pflügers Arch. 2, 307–322.CrossRefGoogle Scholar
  28. Ewart, A. J., 1903: On the Physics and Physiology of Protoplasmic Streaming in Plants. Oxford.Google Scholar
  29. Fricke, H., 1925: The electric capacity of suspensions with special reference to blood. J. gen. Physiol. (Am.) 9, 137–152.CrossRefGoogle Scholar
  30. FÜRTH, O., 1922: Zur Theorie der amoeboiden Bewegungen. Arch, neerl. Physiol. 7, 39–45.Google Scholar
  31. Gad, J., 1878: Zur Lehre der Fettresorption. Arch. Anat. usw. 1878 (part 2), 181–205.Google Scholar
  32. Gruber, K., 1912: Biologische und experimentelle Untersuchungen an Amoeba proteus. Arch. Protistenk. 25, 316–376.Google Scholar
  33. Haberlandt, L., 1919: tJber amoeboide Bewegung. Z. Biol. 69, 409–436.Google Scholar
  34. Harvey, E. B., 1932: The development of half and quarter eggs of Arbacia punctu- lata and of strongly centrifuged whole eggs. Biol. Bull. 62, 155–167.CrossRefGoogle Scholar
  35. Harvey, E. B., 1933: Effects of centrifugal force on fertilized eggs of Arbacia punctulata as observed with the centrifuge-microscope. Biol. Bull. 65, 389–396.CrossRefGoogle Scholar
  36. Harvey, E. B., 1935: Some surface phenomena in the fertilized sea urchin egg as influenced by centrifugal force. Biol. Bull. 69, 298–304.CrossRefGoogle Scholar
  37. Harvey, E. B., 1945: Stratification and breaking of the Arbacia punctulata egg when centrifuged in single salt solutions. Biol. Bull. 89, 72–75.CrossRefGoogle Scholar
  38. Harvey, E. N., 1931 a: A determination of the tension at the surface of eggs of the anelid, Chaetopterus. Biol. Bull. 60, 67–71.CrossRefGoogle Scholar
  39. Harvey, E. N., 1931b: The tension at the surface of marine eggs, especially those of the sea urchin, Arbacia. Biol. Bull. 61, 273–279.CrossRefGoogle Scholar
  40. Harvey, E. N., 1932: The Microscope-centrifuge and some of its applications. J. Franklin Inst. 214, 1–23.CrossRefGoogle Scholar
  41. Harvey, E. N., 1933: The flattening of marine eggs under the influence of gravity. J. cellul. a. comp. Physiol. (Am.) 4, 35–47.CrossRefGoogle Scholar
  42. Harvey, E. N., 1936: The properties of elastic membranes with special reference to the cell surface. J. cellul. a. comp. Physiol. (Am.) 8, 251–260.CrossRefGoogle Scholar
  43. Harvey, E. N., 1938: Some physical properties of protoplasm. J. App. Physics 9, 68–80. See also Trans. Farad. Soc. 33, 943–946, 1937.CrossRefGoogle Scholar
  44. Harvey, E. N., and J. F. Danielli, 1936: The elasticity of thin films in relation to the Cell Surface. J. cellul. a. comp. Physiol. (Am.) 8, 31–36.CrossRefGoogle Scholar
  45. Harvey, E. N., 1938: Properties of the cell surface. Biol. Rev. 13, 319–341.CrossRefGoogle Scholar
  46. Harvey, E. N., and G. Fankhauser, 1933: The tension at the surface of the eggs of the salamander, Triturus (Diemyctylus) viridescens. J. cellul. a. comp. Physiol. (Am.) 3, 463–475.CrossRefGoogle Scholar
  47. Harvey, E. N., and D. A. Marsland, 1932: The tension at the surface of Amoeba dubia, with direct observations on the movement of cytoplasmic particles at high centrifugal speeds. J. cellul. a. comp. Physiol. (Am.) 2, 75–97.CrossRefGoogle Scholar
  48. Harvey, E. N., and H. Shapiro, 1934: The interfacial tension between oil and protoplasm within the living cells. J. cellul. a. comp. Physiol. (Am.) 5, 255–267.CrossRefGoogle Scholar
  49. Harvey, E. N., 1941: The recovery period (relaxation) of marine eggs after deformation. J. cellul. a. comp. Physiol. (Am.) 17, 135–144.CrossRefGoogle Scholar
  50. Harvey, E. N., and G. Schoepfle, 1939: The interfacial tension of intracellular oil drops in the eggs of Daphnia pulex and in Amoeba proteus. J. cellul. a. comp. Physiol. (Am.) 13, 383–389.CrossRefGoogle Scholar
  51. Hatschek, E., 1910: Die Filtration von Emulsionen und die Deformation von Emulsionsteilchen unter Druck. Kolloid-Z. 1, 81–86.Google Scholar
  52. Heilrrunn, L. V., 1913–1925: Studies in artificial parthenogenesis. Biol. Bull. 24, 543–361, 1913; 29, 149–205, 1915; 46, 277–280, 1924; 49, 241–249, 1925.Google Scholar
  53. Heilrrunn, L. V., 1952: An Outline of General Physiology. 5rd ed. Philadelphia, pp. 75–88.Google Scholar
  54. HerČIK, F., 1934: Oberflächenspannung; in: Medicinisdie Kolloidlehre, vol. I, Dresden.Google Scholar
  55. Hirschfeld, L., 1909: Ein Versuch, einige Lebenserscheinungen der Amoeben physikalisch-chemisdi zu erklären. Z. allg. Physiol. 9, 529–534.Google Scholar
  56. Hoerer, R., 1902–1926: Physikalische Chemie der Zelle und Gewebe. 1st ed. 1902; 2nd ed. 1906; 5rd ed. 1911; 4th ed. 1914; 5th ed. 1922–1924; 6th ed. 1926.Google Scholar
  57. Hoerer, R., D. I. Hitchcock, J. B. Bateman, D. R. Goddard and W. O. Fenn, 1945: Physical Chemistry of Cells and Tissues. Philadelphia and Toronto.Google Scholar
  58. Hofmeister, W. F. B., 1867: Die Lehre von der Pflanzen-Zelle. Leipzig. 1st vol. of Handbuch der Physiologischen Botanik, ed. by W. Hofmeister.CrossRefGoogle Scholar
  59. Jennings, H. S., 1906: Behavior of the Lower Organisms. New York. 2nd ed. 1923.Google Scholar
  60. Jensen, P., 1901: Untersuchungen über Protoplasmamechanik. Pflügers Ardi. 87, 361–417.CrossRefGoogle Scholar
  61. Jensen, P., 1902: Die Protoplasmabewegung. Erg. Physiol. 1 (part 2), 1–42.CrossRefGoogle Scholar
  62. Kao, C., R. Chamrers and E. L. Chamrers, 1951: The internal hydrostatic pressure of the unfertilized Fundulus egg activated by puncture. Biol. Bull. 101, 210–211. See also pp. 206–207.Google Scholar
  63. Kopac, M. J., 1940: The physical properties of the extraneous coats of living cells. Cold Spring Harbor Symposia 8, 154–170.CrossRefGoogle Scholar
  64. Kopac, M. J., 1943: Micrurgical applications of surface chemistry to the study of the living cell; in: Micrurgical and Germ-free Methods. Springfield, Ill., and Baltimore, Md.Google Scholar
  65. Kopac, M. J., 1944: Some surface-chemical properties of protoplasmic proteins. In J. Alexander’s Colloid Chemistry, New York. Vol. 5, pp. 875–883.Google Scholar
  66. Kopac, M. J., 1950: The surface chemical properties of cytoplasmic proteins. Ann. N. Y. Ac. Sc. 50, 870–909.CrossRefGoogle Scholar
  67. Kopac, M. J., and R. Chamrers, 1937: Coalescence of living cells with oil drops. II. Arbacia eggs immersed in acid or alkaline calcium solution. J. cellul. a. comp. Physiol. (Am.) 9, 545–562.Google Scholar
  68. Kopaczewski, W., 1955: Rôle de la tension superficielle en biologie. Protoplasma 19, 255–292.CrossRefGoogle Scholar
  69. Krizenecky, J., and O. Duriska, 1927: Eine Methode zur Messung der Oberflächen-spannung biologischer Flüssigkeiten gegen ein Protoplasma-ähnliches Medium. Protoplasma 2, 460–497.CrossRefGoogle Scholar
  70. Langmmr, L, and D. Waugh, 1958: The adsorption of proteins at oil-water interfaces and artificial protein-lipoid membranes. J. gen. Physiol. (Am.) 21, 745–755.CrossRefGoogle Scholar
  71. Lillie, R. S., 1905: Fusion of blastomeres and nuclear division without cell division in solutions of non-electrolytes. Biol. Bull. 4, 164–178.CrossRefGoogle Scholar
  72. Lillie, R. S., 1909: The general biological significance of changes in permeability of the surface layer or plasma membrane of living cells. Biol. Bull. 17, 188–208.CrossRefGoogle Scholar
  73. Marsland, D. A., 1933: The site of narcosis in a cell: the action of a series of paraffin oils on Amoeba dubia. J. cellul. a. comp. Physiol. (Am.) 4, 9–34.CrossRefGoogle Scholar
  74. Marsland, D. A., 1942: Protoplasmic streaming in relation to gel structure in the cytoplasm. In The Structure of Protoplasm, pp. 127–161. Ames, Iowa.Google Scholar
  75. Marsland, D. A., 1951: The action of hydrostatic pressure on cell division. Ann. N. Y. Ac. Sc.51, 1327–1555.CrossRefGoogle Scholar
  76. Mcclendon, J. F., 1910: On the dynamics of cell division. Amer. J. Physiol. 27, 240–275.Google Scholar
  77. Mcclendon, J. F., 1911: Ein Versuch, amoeboide Bewegung als Folgeerscheinung des wedbselnden elektrischen Polarisationszustandes der Plasmahaut zu erklären. Pflügers Arch. 140, 271–280.CrossRefGoogle Scholar
  78. Mcclendon, J. F., 1912: A note on the dynamics of cell division. Arch. Entw. 34, 263–266.Google Scholar
  79. Mitchison, J. M., 1952: Cell membranes and cell division. Symposia Soc. Exp. Biol. 6, 105–127.Google Scholar
  80. Moore, A. R., 1930: Fertilization and development without membrane formation in the eggs of the sea urchin, Strongylocentrotus purpuratus. Protoplasma 9, 9–17.Google Scholar
  81. Norris, C. H., 1939: The tension at the surface and other physical properties of the nucleated erythrocyte. J. cellul. a. comp. Physiol. (Am.) 14, 117–133.CrossRefGoogle Scholar
  82. Parpart, A. K., and R. Ballantine, 1952: Molecular anatomy of the red cell membrane; in: Trends in Physiology and Biochemistry. Ed. by E. S. G. Barron, New York, pp. 135–148.Google Scholar
  83. Pfeffer, W., 1891: Zur Kenntnis der Plasmahaut und der Vacuolen etc. Abh. d. math.-phys. Kl. d. Sachs. Akad. d. Wiss. 16, 185–344. See p. 264 and 266.Google Scholar
  84. Pfeiffer, H., 1935: Über die mechanische Deformierung nackter Protoplasma-Blasen. Protoplasma 23, 210–216.CrossRefGoogle Scholar
  85. Pfeiffer, H., 1936 a: Beiträge zur quantitativen Bestimmung von Molekularkräften des Protoplasmas. IV. Eine Methode zur Bestimmung der Oberflächenspannung nackter Protoplasten gegen ein flüssiges Medium. Protoplasma 25, 397–403; see also 528–545.CrossRefGoogle Scholar
  86. Pfeiffer, H., 1936 b: Further tests of the elasticity of protoplasm. Physics 7, 302–305.CrossRefGoogle Scholar
  87. Pfeiffer, H., 1936 c: Beiträge zur quantitativen Bestimmung von Molekularkräften des Protoplasmas. V. Yersuche zur Ermittlung eines Youngeschen “Dehnungsmoduls” von Protoplasmablasen. Protoplasma 26, 327–376.Google Scholar
  88. Pfeiffer, H., 1937: Experimental researches on the non-Newtonian nature of protoplasm. Internat. J. Cytology. Fujii Jubilee, Vol. 701–710.Google Scholar
  89. Quincke, G. H., 1870: Über Capillaritätserscheinungen an der gemeinschaftlichen Oberfläche zweier Flüssigkeiten. Pogg. Ann. d. Phys. 139, 1–89; also Phil. Mag. (4th ser.) 41, 245–266; 370–390; 354–476.CrossRefGoogle Scholar
  90. Quincke, G. H., 1877: Über den Randwinkel und die Ausbreitung von Flüssigkeiten auf festen Körpern. Wied. Ann. Phys., N. F. 2, 145–194; also Phil. Mag. (5th ser.) 5, 321–339; 415–433, 1878.CrossRefGoogle Scholar
  91. Quincke, G. H., 1888: Über periodische Ausbreitung an Flüssigkeits-Oberflächen und dadurch hervorgerufene Bewegungserscheinungen. Wied. Ann. Phys., N. F. 35, 580–642.Google Scholar
  92. Raven, C. P., 1945: The development of the egg of Limnaea stagnalis L. from oviposition till first cleavage. Arch, neerl. Zool. 7, 91–121.CrossRefGoogle Scholar
  93. Rayleigh, L., 1892: On the stabilitv of a cylinder of viscous liquid under capillary force. Phil. Mag. (5th ser.) 34, 145–154.CrossRefGoogle Scholar
  94. Rhumbler, L., 1896: Versuch einer mechanischen Erklärung der indirekten Zell- und Kerntheilung. Arch. Entw. 3, 526–623.Google Scholar
  95. Rhumbler, L., 1898: Physikalische Analysis von Lebenserscheinungen der Zelle. I. Bewegung etc. Arch. Entw. 7, 103–198 and Erg. Anat. Entw. 8, 543–625.Google Scholar
  96. Rhumbler, L., 1899: Physikalische Analyse von Lebenserscheinungen der Zelle. Arch. Entw. 9, 33–102.Google Scholar
  97. Rhumbler, L., 1905: Zur Theorie der Oberflächen-Kräfte der Amöben. Z. wiss. Zool. 83, 1–52.Google Scholar
  98. Rhumbler, L., 1914: Das Protoplasma als physikalisches System. Erg. Physiol. 14, 474–617.CrossRefGoogle Scholar
  99. Robertson, T. B., 1909: Note on the chemical mechanics of cell division. Arch. Entw. 27, 29–34.Google Scholar
  100. Robertson, T. B., 1911: Further remarks on the chemical mechanics of cell division. Arch. Entw. 32, 308–313.Google Scholar
  101. Runnstrom, J., 1952: The cell surface in relation to fertilization. Symposia Soc. Exp. Biol. 6, 39–88.Google Scholar
  102. Runnstrom, J., and L. Monne, 1945: On some properties of the surface-layers of immature and mature sea-urchin eggs, especially the changes accompanying nuclear and cytoplasmic maturation. Arkif. Zool. 36 A (No. 18), 26 pp.Google Scholar
  103. Runnstrom, J., and E. Wickland, 1946: Studies on the surface layers and the formation of the fertilization membrane in sea urchin eggs. J. Colloid Sci. 1, 421–452.CrossRefGoogle Scholar
  104. Shapiro, H., 1941: Centrifugal elongation of cells, and some conditions governing the return to sphericity, and cleavage time. J. cellul. a. comp. Physiol. (Am.) 18, 61–78.CrossRefGoogle Scholar
  105. Shapiro, H., and E. N. Harvey, 1936: The tension at the surface of macrophages. J. cellul. a. comp. Physiol. (Am.) 8, 21–30.CrossRefGoogle Scholar
  106. Sichel, F. J. M., and A. C. Burton, 1936: A kinetic method of studying surface forces in the egg of Arbacia. Biol. Bull. 71, 397–398.Google Scholar
  107. Spek, J., 1918: Oberflächenspannungsdifferenzen als eine Ursache der Zellteilung. Arch. Entw. 44, 5–113.Google Scholar
  108. Swann, M. M., 1952: The nucleus in fertilization and cell-division. Symposia Soc. Exp. Biol. 6, 89–104.Google Scholar
  109. Tait, J., 1920: Capillary phenomena observed in blood cells: Thigmocytes, phagocytosis, amoeboid movement, differential adhesiveness of corpuscles, emigration of leucocytes. Quart. J. exper. Physiol. 12, 1–33.Google Scholar
  110. Taylor, W., 1921: The coalescence of liquid spheres-molecular diameters. Phil. Mag. 41, 877–889.Google Scholar
  111. Thompson, D. W., 1942: Growth and Form. 2nd ed. Cambridge. 1st ed. 1916.Google Scholar
  112. Tiegs, O. W., 1928: Surface tension and the theory of protoplasmic movement. Protoplasma 4, 88–139.CrossRefGoogle Scholar
  113. Verworn, M., 1892: Die Bewegung der lebendigen Substanz. Jena.Google Scholar
  114. Verworn, M., 1895: Vergleichende Physiologie. Jena. Trans, by F. S. LEE. London and New York 1899.Google Scholar
  115. Vexler, D., 1935: A value for the tension at the surface of a myxomycete. Proc. Soc. exper. Biol. a. Med. (Am.) 32, 1539–1541.Google Scholar
  116. VlÈS, F., 1926: Les tensions de surface et les déformations de l’œuf d’Oursin. Arch. Physique biol. 4, 263–284.Google Scholar
  117. VlÈS, F., 1933: Recherdies sur une déformation mécanique des œufs d’Oursin. Arch. Zool exp. et gén. 75, 421–463.Google Scholar
  118. Wilson, E. B., 1925: The Cell in Development and Heredity. New York. 3rd ed., pp. 192–197.Google Scholar
  119. Wilson, W. L., 1951: The rigidity of the cell cortex during cell division. J. cellul. a. comp. Physiol. (Am.) 38, 409–416.CrossRefGoogle Scholar
  120. Wilson, W. L., and L. V. Heilrrunn, 1952: The protoplasmic cortex in relation to stimulation. Biol. Bull. 103, 139–144.CrossRefGoogle Scholar
  121. WRIGHT, T. S., 1867: Observations on British zoophytes and protozoa. J. Anat. a. Physiol. 1, 332–338.Google Scholar

Copyright information

© Springer Verlag Wien 1954

Authors and Affiliations

  • E. Newton Harvey
    • 1
  1. 1.Biology DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations