Skip to main content

Analoge Schalteinheiten

  • Chapter
Lehrbuch der Nuklearelektronik
  • 24 Accesses

Zusammenfassung

Als „Schalteinheit“bezeichnen wir die kleinste, zur Ausübung einer bestimmten Funktion befähigte Anordnung von aktivenund passiven Schaltelementen. Das Verhalten eines elektronischen Gerätes kann dann als Ergebnis des Zusammenwirkens solcher Schalteinheiten verstanden werden. Diese Zusammenfassung von Bauteilen in Schalteinheiten bzw. die funktionsmäßige Gliederung größerer Geräte in Schalteinheiten ist für die Übersichtlichkeitund das Verständnis elektronischer Geräte von entscheidender Bedeutung.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-3-7091-5109-9_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

4.7.1. Verstärker (s. auch 3.4, 6.6.3und 6.6.4)

  • Tietze, U. and C. Schenk: Halbleiter-Schaltungstechnik. Berlin: Springer, 1969.

    Google Scholar 

  • Rupprecht, W.: Lineare Impulsverstärkung. Hamburg: Schenck, 1962.

    Google Scholar 

  • Joyce M. and K. Clarke: Transistor circuit analysis. Reading, Mass.: Addison-Wesley, 1961.

    Google Scholar 

  • Pettit, J. M. and M. M. Mcwhorther: Electronic amplifier circuits. New York: McGraw Hül, 1961.

    Google Scholar 

  • Thornton, R. D., C. L. Searle, D. O. Pederson, R. B. Adlerand E. J. Angelo Jr.: Multistage transistor circuits. SEEC Vol. 5. New York: Wiley, 1965.

    Google Scholar 

  • Hetterscheid, W. T. H.: Designing transistor I. F. amplifiers. New York: Springer, 1966.

    Google Scholar 

  • Hatch, K. F.: High stability nuclear pulse amplifier analysis. IEEE Trans. Nucl. Sci., NS 12 /1, 314 (1965).

    Google Scholar 

  • Hatch, K. F.: Analysisand description of a high stability nuclear pulse amplifier. IEEE Trans. Nucl. Sci., NS 13/1, 351, 767 (1966).

    Google Scholar 

  • Middlebrook, R. D.: Differential amplifiers. New York: Wiley, 1963.

    Google Scholar 

  • Slaughter, D. W.: The emitter-coupled differential amplifier. IRE Trans. Circuit Theory, CT-3/1, 51 (1956).

    Google Scholar 

  • Whittaker, J. K.: A simple current generator. Nucl. Instr. Meth. 39, 183 (1966).

    Google Scholar 

  • Thomason, J. G.: Linear feedback analysis. New York: McGraw Hill, 1955.

    Google Scholar 

  • Taylor, P. L.: Servomechanisms. London: Longmans, 1960.

    MATH  Google Scholar 

  • Bode, H. W.: Network analysisand feedback amplifier design. Princeton, New Jersey: Van Nostrand, 1945.

    Google Scholar 

  • Reich, H. J.: Functional circuitsand oscillators. Princeton, New Jersey: Van Nostrand, 1961.

    Google Scholar 

  • Arbel, A. F.: The current routing amplifier: A novel circuit element. In: Proc. Symp. on Nucl. Instr., Hrsg. J. BERKS. London: Heywood & Co., 1962, p. 210.

    Google Scholar 

  • Arbel, A. F.: Current operated nucleonic modules. Nucl. Instr. Meth. 32, 341 (1965).

    Google Scholar 

  • Poenaru, D. N. and N. Vilcov: Analysis of some circuits used in amplifiers for semiconductor nuclear particle detectors. Nucl. Instr. Meth. 36, 52 (1965).

    Google Scholar 

  • Schapper, M. A.: A high speed transistor amplifier. Nucl. Instr. Meth. 27, 172 (1964).

    Google Scholar 

  • Rush, C. J.: New technique for designing fast rise transistor pulse amplifiers. Rev. Sci. Instr. 35, 149 (1964).

    Google Scholar 

  • Larsen, R. N.: Transistor-biased amplifier utilizing current switching techniques. Nucl. Instr. Meth. 32, 147 (1965).

    Google Scholar 

  • Colunge, B.: A high stability amplifier for nuclear physics applications. Nucl. Instr. Meth. 35, 313 (1965).

    Google Scholar 

  • Jackson, H. G.: 1 ns-risetime amplifier with direct coupling. Nucl. Instr. Meth. 33, 161 (1965).

    Google Scholar 

  • Collinge, B., C. Westand G. H. Lloyd: A high stability amplifier for nuclear physics application. Nucl. Instr. Meth. 35, 313 (1965).

    Google Scholar 

  • Coli, M., S. Lxjpini, V. Silvestriniand G. Penso: A wideband, D.C. coupled, fast amplifier. Nucl. Instr. Meth. 33, 298 (1965).

    Google Scholar 

  • Katkiewicz, W.: Temperatur dependence of FET amplifiers used with junction detectors. CLOR-47/D.

    Google Scholar 

  • Mcmttllen, Ch. W.: Transistorized distributed amplifier. Rev. Sci. Instr. 30, 1109 (1959).

    Google Scholar 

  • Franz, K. and H. Patjksch: The stabilization of pulse amplitudes in amplifiers with negative feedback. Nucl. Instr. Meth. 27, 125 (1964).

    Google Scholar 

4.7.2. Operative Schaltungen

  • Ernst, D.: Elektronische Analogrechner, Wirkungsweiseund Anwendung. Miinchen: Oldenbourg, 1960.

    Google Scholar 

  • Korn, G. A. and T. M. Korn: Elektronische Analogierechenmaschinen (Gleichstromanalog- rechner). Stuttgart: Berliner Union, 1960.

    Google Scholar 

  • Trtjitt, T. D. and A. E. Rogers: Basics of analog computers. New York: Rider, 1960.

    Google Scholar 

  • Eterman, II.: Analogue computers. Oxford: Pergamon Press, 1960.

    Google Scholar 

  • Karplus, W. J.: Analog simulation. New York: McGraw Hill, 1958.

    Google Scholar 

  • Murray, F. J.: Mathematical machines, Vol. I. Digital computers, Vol. II. Analog devices. New York: Columbia University Press, 1961.

    Google Scholar 

  • Htjelsman, L. P.: Circuits, matricesand linear vector spaces. New York: McGraw Hill, 1963.

    Google Scholar 

  • Linvill, J. G.: Transistor negative impedance converters. Proc. IRE 41, 725 (1953).

    Google Scholar 

  • Larky, A. I.: Negative-impedance converters. IRE Trans, on Circuit Theory, CT-4, 124 (1957).

    Google Scholar 

  • Franklin, D. P.: Direct-coupled negative-impedance converter. Electronics Letters 1 /1, 1 (1965).

    Google Scholar 

  • Linvill, J. G.: RC active filters. Proc. IRE 42, 555 (1954).

    Google Scholar 

  • Sallen, R. P. and E. L. Key: A practical method of designing RC active filters. IRE Trans, on Circuit Theory, CT-2/1, 74 (1955).

    Google Scholar 

  • Hiramoto, T.: A logarithmic converter for nuclear pulses. Nucl. Instr. Meth. 32, 141 (1965).

    Google Scholar 

  • Horn, L. S. and B. J. Khasanov: On transfer characteristic of logarithmic amplifier. Nucl. Instr. Meth. 40, 267 (1966).

    Google Scholar 

  • Lunsford, J. S.: Logarithmic pulse amplifier. Rev. Sci. Inst. 36, 461 (1965).

    Google Scholar 

  • Bishop, S. R.: A logarithmic current to voltage amplifier with high sensitivity, stabilityand dynamic range, suitable for field application. IEEE Trans. Nucl. Sci. NS 13 /1, 602 (1966).

    MathSciNet  Google Scholar 

  • Kaifer, R. C.: A pulse multiplier using logarithmic diodes. NAS-NCR 40, 140 (1964).

    Google Scholar 

  • Highleyman, W. H.: An analog multiplier using two FET s. IRE Trans., CS-10, 320 (1962).

    Google Scholar 

  • Miller, G. L. and V. Radeka: Analogue multiplication with FET s. NAS-NRC 40, 104 (1964).

    Google Scholar 

  • Hogg, G. R. and K. H. Lokan: An analog ratio circuit for fission fragment mass determination. Nucl. Instr. Meth. 33, 319 (1965).

    Google Scholar 

  • Gere, E. A.: A high speed analog pulse divider. IEEE Trans. Nucl. Sci. 11 /3, 382 (1964).

    Google Scholar 

  • Tsukttda, M.: A simple pulse voltage dividing circuit (ratio circuit)and its application to the fission fragments study. Nucl. Instr. Meth. 25, 265 (1964).

    Google Scholar 

4.7.3. Rauschen (s. auch 1.6.4)

  • Pfeifer, H.: Elektronisches Rauschen, Teil 1. Leipzig: Teubner, 1959.

    Google Scholar 

  • Ziel, A. Van Der: Noise. Englewood Cliffs, New Jersey: Prentice Hall, 1954.

    Google Scholar 

  • Freeman, J. J.: Principles of noise. New York: John Wiley, 1958.

    MATH  Google Scholar 

  • Schwartz, M.: Information transmission, modulationand noise. New York: McGraw Hill, 1959.

    Google Scholar 

  • Burgess, R. E.: Fluctuation phenomena in solids. New York: Academic Press, 1965.

    MATH  Google Scholar 

  • Davenport, W. B. and W. L. Root: Random signalsand noise. New York: McGraw Hill, 1958.

    Google Scholar 

  • Jolly, W. P.: Low noise electronics. New York: Elsevier, 1967.

    Google Scholar 

  • Dissing, E.: Fluctuation noiseand device structure. IEEE Trans. Nucl. Sci. NS 15 /3, 471 (1968).

    Google Scholar 

  • Wax, N., Hrsg.: Selected papers on noiceand stoichastic processes. New York: Dover Publ., 1954.

    Google Scholar 

  • Blackburn, J. A.: Statistical noiseand spectral analysis. Nucl. Instr. Meth. 63, 66 (1968).

    Google Scholar 

  • Gillespie, A. B.: Signal, Rauschenund Auflösung in Zähl Verstärkern für die Kerntechnik. Berlin: VEB Verlag Technik, 1958.

    Google Scholar 

  • Endresen, W., Hrsg.: Low noise electronics. Oxford: Pergamon, 1962.

    Google Scholar 

  • Fonger, W. H.: Noise in electrical devices. New York: Wiley, 1957.

    Google Scholar 

  • Conference-Report, Noise In Electronic Devices. London: Chapman & Hall, 1961.

    Google Scholar 

  • Schubert, J.: Transistorrauschen im Niederfrequenzgebiet. A. E. Ü 11, 331, 379, 416 (1957).

    Google Scholar 

  • Ziel, A. Van Derand A. G. T. Becking: Theory of junction diodeand junction transistor noise. Proc. IRE 46, 589 (1958).

    Google Scholar 

  • Ziel, A. Van Der: Noise in junction transistors. Proc. IRE 46, 1019 (1958).

    Google Scholar 

  • Sabin, A. S., T. V. Blalockand J. F. Pierce: An experimental study of noise in silicon planar transistors. TID-21939 (1963).

    Google Scholar 

  • Nutt, R., T. V. Blalockand J. F. Pierce: A transistor hybrid-pi noise model. TID-21933 (1962).

    Google Scholar 

  • Blalock, T. Y.: A surveyand evaluation of the semiconductor noise literature. TID-21902 (1962).

    Google Scholar 

  • Blalock, T. V. and J. F. Pierce: Application of field-effect transistors in low-noise wideband voltageand charge-sensitive preamplifiers. TID-21901 (1963).

    Google Scholar 

  • Hilger, U. E., T. V. Blalockand J. F. Pierce: An evaluation of two proposed noise models for the field-effect transistor. TID-21924 (1963).

    Google Scholar 

  • Eberhardt, E. H.: Noise in PM-tubes. IEEE Trans. Nucl. Sci. NS 14 /2, 7 (1967).

    Google Scholar 

  • Sharpe, J.: Dark current in PM-tubes. EMI-Doc. CP 5475.

    Google Scholar 

  • Tsfkuda, M.: The effect of pulse shaping on the S/N ratio of pulse amplifiers for use with solid state radiation detectors. IRE Trans. Nucl. Sci. NS 9, 63 (1962).

    Google Scholar 

  • Bertolaccini, M., C. Bussolati, S. Cova, I. Delottoand E. Gatti: A method for high resolution amplitude measurements in presence of noiseand pile-up fluctuations. Nucl. Inst. Meth. 62, 221 (1968).

    Google Scholar 

  • Bertolaccini, M., C. Bussolatiund E. Gatti: Signal to noise ratio in nuclear pulse ampli-fiers with high repetition rates. Nucl. Instr. Meth. 42, 286 (1966).

    Google Scholar 

  • Blalock, T. V.: Minimum-noise pulse shaping with new double delay-line filters in nuclear pulse amplifiers. Rev. Sci. Instr. 36, 1448 (1965).

    Google Scholar 

  • Bertolaccini, M., C. Bussolati, S. Cova, I. Delottoand E. Gatti: Optimum processing for amplitude distribution evaluation of a sequence of randomly spaced pulses. Nucl. Instr. Meth. 61, 84 (1968).

    Google Scholar 

  • Onno, P. and R. E. Bell: Dependence of line widths of scintillation counters on integrating time constant. Nucl. Instr. Meth. 17, 149 (1962).

    Google Scholar 

  • Franz, K. and K. Müller: Dependence of the line widths of scintillation counters with NaI(Tl)-crystals on integration time constant. Nucl. Instr. Meth. 22, 43 (1963).

    Google Scholar 

  • Radeka, V.: Optimum signal-processing for pulse-amplitude spectrometry in the presence of high-rate effectsand noise. IEEE Trans. Nucl. Sci. NS 15 /3, 455 (1968).

    Google Scholar 

  • Dewit, P. and A. C. Wolff: The use of tapped delay lines for optimal filtering of nuclear pulses. Nucl. Instr. Meth. 61, 237 (1968).

    Google Scholar 

  • Weise, K.: Das Signal-Rausch-Verhältnis eines zeitabhängigen Filters zur Verbesserung des Energieauflösungsvermögens bei der Kernstrahlungs-Spektroskopie mit Halbleiterdetektoren. Nucl. Instr. Meth. 61, 241 (1968).

    Google Scholar 

  • Deighton, M. O.: A time-domain method for calculating noise of active integrators used in pulse amplitude spectrometry. Nucl. Instr. Meth. 58, 201 (1968).

    Google Scholar 

  • Fairstein, E.: Pulse shaping by triple differentiation in nuclear pulse amplifiers. IEEE Trans. Nucl. Sci. NS 13 /1, 596 (1966).

    Google Scholar 

4.7.4. Lineare Gatter

  • Schuster, H. J.: Eine lineare Torschaltung. Nucl. Instr. Meth. 58, 179 (1968).

    Google Scholar 

  • Gotjlding, F. S.: The series-parallel transistor switch as a linear gate. NAS-NCR 40, 121 (1964)

    Google Scholar 

  • Shipley, M., JR.: Analog switching circuits use field effect devices. Electronics, 28. Dec. (1964).

    Google Scholar 

  • Barton, K.: The field-effect transistor used as a low-level chopper. Electron-Eng. 37 /444, 80 (1965).

    Google Scholar 

  • Papadopottlos, L.: Operation of a transistor in saturation stateand a linear gate. Nucl. Instr. Meth. 36, 122 (1965).

    Google Scholar 

  • Sasaki, A.: A transistorized linear gate for use with a double grid ionization chamber. Nucl. Instr. Meth. 33, 252 (1965).

    Google Scholar 

  • Feldman, M.: Fast linear gate with very small pedestal. Rev. Sci. Instr. 36, 241 (1965).

    Google Scholar 

  • Coli, M.: A new bilateral fast linear gate circuit. Nucl. Instr. Meth. 34, 235 (1965).

    Google Scholar 

  • Elad, E. and S. Rozen: A transistorized linear gate. Nucl. Instr. Meth. 37, 58 (1965).

    Google Scholar 

  • Barna, A.: 50-ns printed circuit linear gate using transistors. Rev. Sci. Inst. 35, 881 (1964).

    Google Scholar 

  • Kandiah, K.: Linear gateand biased amplifier. NAS-NCR 40, 119 (1964).

    Google Scholar 

  • Lindsay, J. B.: A fast linear gate. Nucl. Instr. Meth. 20, 345 (1963).

    Google Scholar 

  • Liu, F. F. and F. J. Loeffler: Transistorized linear gate for PM-pulses. Nucl. Instr. Meth. 12, 124 (1961).

    Google Scholar 

  • Chaplin, G. B. B. and A. J. Cole: A linear gate of 10 to 100 ns duration. Nucl. Instr. Meth. 7, 45 (1960).

    Google Scholar 

4.7.5. Impulsverlängerer

  • Weddigen, C.: Nichtintegrierender Verlängerer für Impulse von 20 mV bis 2,5 V Höheund 6 bis 300 ns Länge. KfK 247 (1964).

    Google Scholar 

  • Goyot, M., J. Pigneret, J. Remillteux, J. J. Samueliand A. Sarazin: Nanosecond pulse stretcher. Nucl. Instr. Meth. 53, 87 (1967).

    Google Scholar 

  • Almaraz, H. A.: A temporary pulse-storage unit. Nucl. Instr. Meth. 33, 61 (1965).

    Google Scholar 

  • Weddigen, C. and E. L. Haase: Non-integrating stretcher for pulses of 6 to 300 ns length. Nucl. Instr. Meth. 33, 157 (1965).

    Google Scholar 

  • Venturello, G.: A pulse stretcher circuit for fast spectrometry. Nucl. Instr. Meth. 33, 268 (1965).

    Google Scholar 

  • Thomas, R. N.: A pulse-lengthening circuit. J. Sci. Instr. 42, 169 (1965).

    Google Scholar 

  • Kandiah, K.: Limiting factors in the use of storage tubes as temporary stores for pulse amplitudes. NAS-NRC 40, 292 (1964).

    Google Scholar 

4.7.6. Impulslängen-Amplituden-Wandler

  • Cooke-Yarborotjgh, E. H.: A possible method of improving the low-level linearity of pulse- height to time converters. NAS-NRC 40, 169 (1964).

    Google Scholar 

  • Bell, J., S. J. Taoand J. H. Green: Constructionand performance of a fast time-to-amplitude converter. Nucl. Instr. Meth. 35, 213 (1965).

    Google Scholar 

  • Bell, J., J. H. Greenand S. J. Tao: A wide range high resolution time-to-amplitude converter. Nucl. Instr. Meth. 36, 320 (1965).

    Google Scholar 

  • Schweimer, W.: Ein einfacher Zeit-zu-Impulshöhe-Konverter für Stoppsignalfrequenzen von 3–40 MHz. Nucl. Instr. Meth. 32, 190 (1965).

    Google Scholar 

  • Maeder, D.: A time-to-voltage converter for high counting rates. Proc. Conf. on Automatic Acquisitionand Reduction of Nuclear Data. Hrsg. K. H. BECKTTRTS U. a., Karlsruhe 1964, S. 311.

    Google Scholar 

  • Jones, G. and W. R. Falk: Transistorized time-to-amplitude converter. Nucí. Instr. Meth. 37, 22 (1965).

    Google Scholar 

  • Brafman, H.: A fast wide range time to height converter. Nucl. Instr. Meth. 34, 239 (1965).

    Google Scholar 

  • Weisberg, H.: A single valued time to pulse height converter using tunnel diodes. Nucl. Instr. Meth. 32, 133 (1965).

    Google Scholar 

  • Bloess, D. and F. Münnich: Ein transistorisierter Zeit-Amplituden-Konverter nach einer Sampling-Methode. Nucl. Instr. Meth. 28, 286 (1964).

    Google Scholar 

  • Weisberg, H. L. and S. Berko: A single-valued time-to-pulse-height system using tunnel diodes. IEEE Trans. Nucl. Sci. NS 11 /3, 406 (1964).

    Google Scholar 

  • Wieber, D. L.: A Fast, Wide Range, Time-To-Height Conversion System. Nucl. Instr. Meth. 24, 269 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag / Wien

About this chapter

Cite this chapter

Weinzierl, P., Drosg, M. (1970). Analoge Schalteinheiten. In: Lehrbuch der Nuklearelektronik. Springer, Vienna. https://doi.org/10.1007/978-3-7091-5109-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-5109-9_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-5110-5

  • Online ISBN: 978-3-7091-5109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics