On Ion Sources with High Efficiency and Intensity

  • J. Kistemaker
Conference paper


The conditions determining the shape of the ion emitting plasma cap in ion sources are analysed. Dense plasmas (n i =1014) give expanding caps as in the VON ARDENNE source. Thin plasmas (n i = 1010) give inward bended caps as in all normal ion sources. This difference in shape means a difference in ion emission with a factor ten.

The problem of an ion source with a high material efficiency is solved by the magnetic type ion sources. The VON ARDENNE source has a high density plasma (n i = 1014) in the emission region with an extremely high electron temperature. Therefore hardly any neutral particles are available. In the magnetic P. I. G. type sources the material efficiency is obtained by internal ion focusing. They run with low plasma density (n i = 1010). For the separation of microgramme quantities of rare materials (radioactive or toxic like Pu) the P. I. G. type source should be preferred to the normally used arc source.


Discharge Chamber Plasma Boundary Exit Hole Axial Magnetic Field Space Charge Limited Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamb, W. A. S., and E. J. Lofgren, R.S.I. 27, 907 (1956).Google Scholar
  2. 2.
    Von Ardenne, M., Tabellen der Elektronenphysik, Ionenphysik und Übermikroskopie I, p. 544–549 (1956).Google Scholar
  3. 3.
    Moak, C. D., H. Reese, and W. M. Good, Nucleonics 9, 18 (1951).Google Scholar
  4. 4.
    Kistemaker, J., P. K. Rol, J. Schutten, and C. de Vries, Z. Naturf. 10 a, 850 (1955).ADSGoogle Scholar
  5. 5.
    Sommeria-Klein, J., Ann. Phys., Paris, 13, 344 (1956).Google Scholar
  6. 6.
    Druaux, J., and R. Bernas, Proc. Harwell Conf. 1955.Google Scholar
  7. 7.
    Almén, O., and K. O. Nielsen, Proc. Harwell Conf. 1955.Google Scholar
  8. 8.
    Barnett, C. F., P. M. Stier, and G. E. Evans, R.S.I. 24, 394 (1953).Google Scholar
  9. 9.
    Kamke, D., Handbuch der Physik 33 (1956).Google Scholar
  10. 10.
    Kistemaker, J., and H. L. Douwes Dekker, Physica 16, 198, 209 (1950).ADSCrossRefGoogle Scholar
  11. 11.
    Langmuir, L, and K. T. Compton, R.M.P. 3, 237 (1931).Google Scholar
  12. 12.
    Almen, O., and K. O. Nielsen, Nuclear Instruments 1, 302 (1957).CrossRefGoogle Scholar
  13. 13.
    Fröhlich, H., Nukleonik 1, 184 (1958).Google Scholar
  14. 14.
    Moak, C. D., c. s., R.S.I. 30, 694 (1959).Google Scholar
  15. 15.
    Skilbreid, O., Sidenius, G., (present volume) p. 243.Google Scholar
  16. 1.
    Moak and al. R.S.I, 30, 694 (1959).Google Scholar

Copyright information

© Springer-Verlag in Vienna 1961

Authors and Affiliations

  • J. Kistemaker
    • 1
  1. 1.F.O.M.-Laboratorium voor MassaspectrografieAmsterdamThe Netherlands

Personalised recommendations