Skip to main content

Spinal Cord Protection in Thoracic Aortic Surgery

  • Chapter
  • First Online:
Surgical Management of Aortic Pathology
  • 1673 Accesses

Abstract

If we except death, ischaemic spinal cord injury (SCI) represents the most devastating postoperative complication of open and endovascular descending thoracic and thoraco-abdominal repair. Through experimental and clinical studies, a large number of diagnostic, surgical, anaesthesiologic and intensive care management innovations and modifications have been introduced during the last half-century in order to reduce dramatically the incidence of SCI. This has led the surgical community to better understand the physiology of the spinal cord and the neural structures and to evolve from a strict anatomical vascular concept of spinal cord protection to a more physiological one. In the present chapter, we shall describe the anatomy and physiology of the spinal cord, the consequences of ischaemia, the techniques and improvements regarding spinal cord blood supply and the strategies for shortening intra-procedural spinal cord ischaemia and for increasing spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. Hopefully this will help surgical teams dealing with thoracic or thoraco-abdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etheredge SN, Yee J, Smith JV, Schonberger S, Goldman MJ. Successful resection of a large aneurysm of the upper abdominal aorta and replacement with a homograft. Surgery. 1955;38:1071–5.

    CAS  PubMed  Google Scholar 

  2. De Bakey ME, Creech O, Morris GC. Aneurysm of the thoraco-abdominal aorta involving the celiac, superior mesenteric and renal arteries: report of four cases treated by resection and homograft replacement. AnnSurg. 144:549–73.

    Google Scholar 

  3. Crawford ES. Thoraco-abdominal and abdominal aneurysms involving celiac, superior mesenteric and renal arteries. Ann Surg. 1974;179:763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Corbin JL. Anatomie et pathologie artérielle de la moelle. Paris: Masson; 1961.

    Google Scholar 

  5. Biglioli P, Spirito R, Roberto M, Grillo F, Cannata A, Parolari A, Maggioni M, Coggi G. The anterior spinal artery: the main arterial supply of the human spinal cord. A preliminary anatomic study. J Thorac Cardiovasc Surg. 2000;119:376–9.

    Article  CAS  PubMed  Google Scholar 

  6. Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, McCullough J, Bodian C. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoraco-abdominal aorta. J Thorac Cardiovasc Surg. 1996;112:1202–15.

    Article  CAS  PubMed  Google Scholar 

  7. Adamkiewicz A. Die blutgefässe des menschlichen rückenmarkoberfläche. S B Heidelberg Akad Wiss. 1882;85:101–30.

    Google Scholar 

  8. Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P. Arterial vascularization of the spinal cord. Recent studies of the anastomotic substitution pathways. J Neurosurg. 1971;35:253–62.

    Article  CAS  PubMed  Google Scholar 

  9. Svensson LG, Klepp P, Hinder RA. Spinal cord anatomy of the baboon: comparison with man and implications on spinal cord blood flow during thoracic aortic cross-clamping. S Afr J Surg. 1986;24:32–4.

    CAS  PubMed  Google Scholar 

  10. Taira Y, Marsala M. Effects of proximal arterial perfusion pressure on function, spinal cord blood flow and histo-pathologic changes after increasing intervals of aortic occlusion in the rat. Stroke. 1996;27:1850–8.

    Article  CAS  PubMed  Google Scholar 

  11. Marcus ML, Heistad DD, Ehrhardt JC, Abou FM. Regulation of total and regional spinal cord blood flow. Circ Res. 1977;41:128–34.

    Article  CAS  PubMed  Google Scholar 

  12. Satran R. Spinal cord infarction. Stroke. 1988;19:529–32.

    Article  CAS  PubMed  Google Scholar 

  13. Holz A, Nyström B, Gerdin B. Regulation of spinal cord blood flow in the rat as measured by quantitative autoradiography. Acta Physiol Scand. 1988;133:485–93.

    Article  Google Scholar 

  14. Rubinstein A, Arbit E. Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery. 1990;27:882–6.

    Article  CAS  PubMed  Google Scholar 

  15. Miyamoto K, Ueno A, Wada T. A new and simple method of preventing spinal cord damage following temporary occlusion of thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg. 1960;1:188–97.

    CAS  Google Scholar 

  16. Koroshetz WJ, Moskowitz MA. Emerging treatments for stroke in humans. Trends Pharmacol Sci. 1996;17:227–33.

    Article  CAS  PubMed  Google Scholar 

  17. Eliasson MJL, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999;19:5910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee SZ, Pan ZH, Aggarwal SK, Chen HSV, Hartman J, Sucher NJ, Lipton SA. Effect of nitric oxide production on the redox modulatory site on the NMDA receptor-channel complex. Neuron. 1992;8:1087–99.

    Article  Google Scholar 

  19. Rokkas CK, Helfrich LR, Lobner DC, Choi DW, Kouchoukos NT. Dextrophan inhibits the release of excitatory amino acids during spinal cord ischemia. Ann Thorac Surg. 1994;38:312–20.

    Article  Google Scholar 

  20. Simpson RK, Robertson CS, Goodman JC. Spinal cord ischemia-induced elevation of amino-acids : extra-cellular measurement with micro dialysis. Neurochem Res. 1990;15:635–9.

    Article  CAS  PubMed  Google Scholar 

  21. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.

    Article  CAS  PubMed  Google Scholar 

  22. Rothman SM, Olney JW. Excito-toxicity and the NMDA receptors. Trends Neurosci. 1987;10:299–302.

    Article  CAS  Google Scholar 

  23. Olney JW, Sharpe LG. Brain lesions in infant rhesus monkey treated with monosodium glutamate. Science. 1969;166:386–8.

    Article  CAS  PubMed  Google Scholar 

  24. Mori A, Ueda Y, Nakamishi T, Yasudo M, Aeba R, Odagushi H, Mitsumaru A, Ito T, Yozu R, Koto A, Kawada S. Detrimental effects of exogenous glutamate on spinal cord neurons during brief ischemia in vivo. Ann Thorac Surg. 1997;63:1057–62.

    Article  CAS  PubMed  Google Scholar 

  25. Regan RF. The vulnerability of spinal cord neurons to excito-toxic injury: comparison with cortical neurons. Neurosci Lett. 1996;213:9–12.

    Article  CAS  PubMed  Google Scholar 

  26. Beckman JS, Beckman TW, Chen J, Marshall PA, Freema BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Demopoulos HB, Flamm ES, Pietronigro D. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand. 1980;492:S91–119.

    Google Scholar 

  28. Wan IYP, Angelini GD, Bryan AJ, Ryder I, Unsderwood MJ. Prevention of spinal cord ischaemia during descending thoracic and thoraco-abdominal aortic surgery. Eur J Cardiothorac Surg. 2001;19:203–13.

    Article  CAS  PubMed  Google Scholar 

  29. Barinaga M. Stroke damaged neurons may commit cellular suicide. Science. 1998;281:1302–3.

    Article  CAS  PubMed  Google Scholar 

  30. Charriault-Marlangue C, Margail I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. Apoptosis and necrosis after reversible focal ischaemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996;16:186–94.

    Article  Google Scholar 

  31. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab. 1996;16:195–201.

    Article  CAS  PubMed  Google Scholar 

  32. Linnik M, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischaemia in rats. Stroke. 1993;24:2002–9.

    Article  CAS  PubMed  Google Scholar 

  33. McManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E. Global ischaemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett. 1993;164:89–92.

    Article  Google Scholar 

  34. Kato H, Kanellopoulos GP, Matsuo S, Wu YJ, Jacquin MF, Hsu CY, Choi DW, Kouchoukos NT. Protection of rat spinal cord from ischemia with dextrorphan and cycloheximide : effects on necrosis and apoptosis. J Thorac Cardiovasc Surg. 1997;114:609–18.

    Article  CAS  PubMed  Google Scholar 

  35. Sakurai M, Fukuyama N, Takizawa S, Abe K, Hayashi T, Shinohara Y, Nakazawa H, Tabayashi K. Dissociation of HSP72 and HSC73 heat shock mRNA inductions after spinal cord ischemia in rabbits. Neurosci Lett. 1996;217:113–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sakurai M, Hayashi T, Abe K, Itoyama Y, Tabayashi K. Cyclin D1 and Cdk4 protein induction in motor neurons after transient spinal cord ischemia in rabbits. Stroke. 2000;31:200–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA. Inhibition of the interleukin-1-β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A. 1997;94:2007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayashi T, Sakurai M, Abe K, Sadahiro M, Tabayashi K, Itoyama Y. Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke. 1998;29:1007–13.

    Article  CAS  PubMed  Google Scholar 

  39. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC. Release of Caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. PNAS. 1999;96:5752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614–20.

    Article  CAS  PubMed  Google Scholar 

  41. Chinaiyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9 : a molecular framework for cell death. Science. 1997;275:1122–6.

    Article  Google Scholar 

  42. Gelman S, Reves JG, Fowler K, Samuelson PN, Lell WA, Smith LR. Regional blood flow during cross-clamping of the thoracic aorta and infusion of nitroprusside. J Thorac Cardiovasc Surg. 1983;85:287–91.

    CAS  PubMed  Google Scholar 

  43. Cernaianu AC, Olah A, Cilley JH Jr, Gaprindashvili T, Galucci JG, Del Rossi AJ. Effects of sodium nitroprusside on paraplegia during cross-clamping of the thoracic aorta. Ann Thorac Surg. 1993;56:1035–7.

    Article  CAS  PubMed  Google Scholar 

  44. Blaisdell W, Cooley D. The mechanism of paraplegia after temporary thoracic occlusion and its relation to spinal fluid pressure. Surgery. 1962;51:351–5.

    CAS  PubMed  Google Scholar 

  45. Carrel A. On the experimental surgery of the thoracic aorta and the heart. Ann Surg. 1910;52:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Svensson LG, Loop FD. Prevention of spinal cord ischemia in aortic surgery. In: Bergan JJ, JST Y, editors. Arterial surgery: new diagnostic and operative techniques. New York: Grune & Straton; 1998. p. 273–85.

    Google Scholar 

  47. Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoraco-abdominal aortic operations. J Vasc Surg. 1993;17:357–68.

    Article  CAS  PubMed  Google Scholar 

  48. Katz NM, Blackstone EH, Kirklin JW, Karp RB. Incremental risk factors for spinal cord injury following operation for aortic transaction. J Thorac Cardiovasc Surg. 1981;81:669–74.

    CAS  PubMed  Google Scholar 

  49. Livesay JL, Cooley DA, Ventimiglia RA. Surgical experience in descending thoracic aneurysmectomy with and without adjuncts to avoid ischemia. Ann Thorac Surg. 1985;39:37–46.

    Article  CAS  PubMed  Google Scholar 

  50. Von Oppel UO, Dunne TT, De Groot KM, Zilla P. Traumatic aortic rupture: twenty-year meta-analysis of mortality and risk of paraplegia. Ann Thorac Surg. 1994;58:585–93.

    Article  Google Scholar 

  51. Crawford ES, Crawford JL, Safi HJ, Coselli JS, Hess KR, Brooks B, Norton HJ, Glaeser DH. Thoraco-abdominal aortic aneurysms : preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg. 1986;3:389–404.

    Article  CAS  PubMed  Google Scholar 

  52. Schepens MA, Defaw JJ, Hamerlinjck RP, De Geest R, Vermaulen FE. Surgical treatment of thoraco-abdominal aortic aneurysms by simple cross-clamping. Risk factors and late results. J Thorac Cardiovasc Surg. 1994;107:134–42.

    CAS  PubMed  Google Scholar 

  53. Bachet J, Guilmet D, Rosier J, Cron C, Dreyfus G, Goudot B, Piquois A, Brodaty D, Dubois C, de Lendtdecker P. Protection of the spinal cord during surgery of thoraco-abdominal aortic aneurysms. Eur J Cardiothorac Surg. 1996;10:817–25.

    Article  CAS  PubMed  Google Scholar 

  54. Wadouh F, Lindemann EM, Arndt CF, Hetzer R, Borst HG. The arteria radicularis magna anterior as a decisive factor influencing spinal cord damage during aortic occlusion. J Thorac Cardiovasc Surg. 1984;88:1–10.

    CAS  PubMed  Google Scholar 

  55. Svensson LG, Rickards E, Coull A, Rogers G, Fimmel CJ, Hinter RA. Relationship of spinal cord blood flow to vascular anatomy during thoracic aortic cross-clamping and shunting. J Thorac Cardiovasc Surg. 1986;91:71–8.

    CAS  PubMed  Google Scholar 

  56. Svensson LG, Hunter SJ, Von Ritter CM, Robinson MF, Groenenveld HT, Hinder RA, Rickards ES. Cross-clamping of the thoracic aorta. Influence of aortic shunts, laminectomy, papaverine, calcium channel blockers, allopurinol and superoxide dismutase on spinal cord blood flow and paraplegia in baboons. Ann Surg. 1986;204:38–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Svensson LG, Patel V, Robinson MF, et al. Influence of preservation or perfusion of intraoperatively identified spinal cord blood supply on spinal motor evoked potentials and paraplegia after aortic surgery. J Vasc Surg. 1991;13:355–65.

    Article  CAS  PubMed  Google Scholar 

  58. Crawford ES, Svensson LG, Hess KR, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoraco-abdominal aorta. J Vasc Surg. 1991;17:36–45.

    Article  CAS  Google Scholar 

  59. Guilmet D, Rosier J, Richard T, Bachet J, Goudot B, Bical O. Chirurgie des anévrysmes thoraciques et thoraco-abdominaux intéressantl’artère d’Adamkiwiecz. Intérêt de l’hypothermie profonde. La nouv Press Med. 1981;10:3303–6.

    CAS  Google Scholar 

  60. Kieffer E, Richard T, Chiras J, Godet G, Cormier E. Preoperative spinal cord arteriography in aneurysmal disease of the descending thoracic and thoraco-abdominal aorta : preliminary results in 45 patients. Ann Vasc Surg. 1989;3:34–46.

    Article  CAS  PubMed  Google Scholar 

  61. Heinemann MK, Brassel F, Herzo T, Dresler C, Becker H, Borst HG. The role of spinal angiography in operations on the thoracic aorta: myth or reality ? Ann Thorac Surg. 1998;65:346–51.

    Article  CAS  PubMed  Google Scholar 

  62. Szilagyi DE, Hageman JH, Smith RE, et al. Spinal cord damage in surgery of the abdominal aorta. Surgery. 1978;83:38–56.

    CAS  PubMed  Google Scholar 

  63. Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E. Spinal cord aerteriography: a safe adjunct before descending thoracic or thoraco-abdominal aortic aneurysmectomy. J Vasc Surg. 2002;35:262–8.

    Article  PubMed  Google Scholar 

  64. Yamada N, Okita Y, Minayota K, Tagusari O, Ando M, Takamiya M, Kitamura S. Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoraco-abdominal aortic aneurysms. Eur J Cardiothorac Surg. 2000;18:104–11.

    Article  CAS  PubMed  Google Scholar 

  65. Cunnigham JN, Lashinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. Clinical observations and results. J Thorac Cardiovascv Surg. 1987;94:275–85.

    Google Scholar 

  66. Cohen AR, Young W, Ransohoff J. Intraspinal localization of SSEP. Neurosurgery. 1981;9:57–63.

    Article  Google Scholar 

  67. Robertazzi RR, Cunnigham JN. Monitoring of somatosensory evoked potentials : a primer on the intraoperative detection of spinal cord ischemia during aortic reconstructive surgery. Semin Thorac Cardiovasc Surg. 1998;10:11–7.

    Article  CAS  PubMed  Google Scholar 

  68. Cunnigham JN, Lashinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, Spencer FC. Measurement of spinal cord ischemia during operations upon the thoracic aorta. Initial clinical experience. Ann Surg. 1982;196:285–93.

    Article  Google Scholar 

  69. Shahin GM, Hamerlijnk RP, Shepens MA et al. Upper and lower extremity somatosensory evoked potential during surgery for aneurysms of the descending thoracic aorta. Eur J Thorac Cardiovasc Surg 1996;10 :229-234.

    Google Scholar 

  70. Guerit JM, Verheist R, Rubay J, Dion R. Multilevel somatosensory evoked potentials for spinal cord monitoring I descending thoracic and thoraco-abdominal aortic surgery. Eur J Thorac Cardiovasc Surg. 1996;10:93–103.

    Article  CAS  Google Scholar 

  71. Schepens MA, Boezeman EH, Hamerlijnk RP, Beek H, Vermeulen FE. Somatosensory evoked potentials during exclusion and reperfusion of critical aortic segments in thoraco-abdominal aortic aneurysm surgery. J Card Surg. 1994;9:692–702.

    Article  CAS  PubMed  Google Scholar 

  72. Galla JD, Ergin MA, Lansman SL, McCullough JN, Nguyen KH, Spievogel D, Klein JJ, Griepp RB. Use of somatosensory evoked potentials for thoracic and thoraco-abdominal aortic resections. Ann Thorac Surg. 1999;67:S1947–52.

    Article  Google Scholar 

  73. Guerit JM, Witdoeckt C, Verhelst R, Matta AJ, Jaquet LM, Dion RA. Sensitivity, specificity and surgical impact of somatosensory evoked potentials in descending aortic surgery. Ann Thorac Surg. 1999;67:S1943–6.

    Article  Google Scholar 

  74. De Hann P, Kalkmann CJ, de Mol BA. Efficacy of trans-cranial motor evoked potentials to detect spinal cord ischemia during operations for thoraco-abdominal aneurysm. J Thorac Cardiovasc Surg. 1997;13:355–65.

    Google Scholar 

  75. Jacobs MJ, Meylarets SA, De Hann P, De Mol BA, Kalkman CJ. Strategies to prevent neurologic deficit based on motor evoked potentials in type I and II thoraco-abdominal aortic aneurysm repair. J Vasc Surg. 1999;29:48–59.

    Article  CAS  PubMed  Google Scholar 

  76. Svensson LG, Crawford ES. Complications of distal aorta operations. Cardiovascular and vascular diseases of the aorta. Philadelphia: WB Saunders. p. 423.

    Google Scholar 

  77. Svensson LG, Patel V, Coselli JS, Crawford ES. Preliminary report of localization of spinal cord blood supply by hydrogen during aortic operations. Ann Thorac Surg. 1990;49:528–36.

    Article  CAS  PubMed  Google Scholar 

  78. Etz CD, Luehr M, von Aspern KV, Gudehus S, Luehr M, Girrbach FF, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46:651–6.

    Article  CAS  PubMed  Google Scholar 

  79. Cooley DA, Baldwin RT. Technique of open distal anastomosis for repair of descending thoracic aortic aneurysms. Ann Thorac Surg. 1992;54:932–6.

    Article  CAS  PubMed  Google Scholar 

  80. Cooley DA, Golino A, Frazier OH. Single-clamp technique for aneurysms of the descending thoracic aorta : report of 132 consecutive cases. Eur J Cardiothorac Surg. 2000;18:162–7.

    Article  CAS  PubMed  Google Scholar 

  81. Lang-Lazdunski L, Bachet J, Rogers C. Repair of the descending thoracic aorta: impact of open distal anastomosis technique on spinal cord perfusion, neurological outcome and spinal cord histopathology. Eur J Cardiothorac Surg. 2004;26:351–35.

    Article  PubMed  Google Scholar 

  82. Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HJ, Patel V. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg. 1988;95:357–67.

    CAS  PubMed  Google Scholar 

  83. Gharagozloo F, larson J, Dansmann MJ, Neville RF, Gomes MN. Spinal cord protection during surgical procedures on the descending thoracic and thoraco-abdominal aorta. Chest. 1996;109:799–809.

    Article  CAS  PubMed  Google Scholar 

  84. Gott VF, Whiffen JD, Dutton RC. Heparin bonding on graphite surfaces. Science. 1963;142:1297.

    Article  CAS  PubMed  Google Scholar 

  85. Verdant A. Surgery of the descending thoracic aorta: spinal cord protection with the Gott shunt. Updated 1995. Ann Thorac Surg. 1995;60:1151–2.

    Article  CAS  PubMed  Google Scholar 

  86. Duhaylongsod FG, Glower DD, Wolfe WG. Acute traumatic aortic aneurysm: the Duke experience from 1970 to 1990. J Vasc Surg. 1992;15:331–43.

    Article  CAS  PubMed  Google Scholar 

  87. Hingelberg AD, Logan DL, Akins CW, Buckley LJ, Dagget WM, Vlahakas GJ, Torchiana DF. Blunt injuries of the thoracic aorta. Ann Thorac Surg. 1992;53:233–9.

    Article  Google Scholar 

  88. Robertazi RR, Acinapura AJ. The efficacy of left atrial to femoral artery bypass in the prevention of spinal cord ischemia during aortic surgery. Semin Thorac Cardiovasc Surg. 1998;10:67–71.

    Article  Google Scholar 

  89. Schepens MA, Vermeulen FE, Morshuis WJ, Dossche KM. Impact of left heart bypass on the results of thoraco-abdominal aortic aneurysm repair. Ann Thorac Surg. 1999;67:1936–47.

    Article  Google Scholar 

  90. Ferhenbacher JW, McCready RA, Hortmuth DA, Beckman DJ, Halbrook HG, Herod GT, Pitman JN, Siderys H. One-stage segmental resection of extensive thoraco-abdominal aneurysms with left-sided heart bypass. J Vasc Surg. 1993;18:366–71.

    Article  Google Scholar 

  91. Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ, Patel V. Variables predictive of outcome in 832 patients undergoing repairs of the descending thoracic aorta. Chest. 1993;104:1248–53.

    Article  CAS  PubMed  Google Scholar 

  92. Lawrie GM, Earle N, DeBakey ME. Evolution of surgical techniques for aneurysms of the descending thoracic aorta : twenty-nine years experience with 659 patients. J Card Surg. 1994;9:648–61.

    Article  CAS  PubMed  Google Scholar 

  93. Borst HG, Jurmann M, Buhner B, Laas J. Risk of replacement of descending aorta with a standardized left heart bypass technique. J Thorac Cardiovasc Surg. 1994;107:126–33.

    CAS  PubMed  Google Scholar 

  94. Najafi H. Descending aortic aneurysmectomy without adjuncts to avoid ischemia 1993 update. Ann Thorac Surg. 1993;55:1042–5.

    Article  CAS  PubMed  Google Scholar 

  95. Goudot B, Bachet J, Bical O, Laurian C, Guilmet D. Chirurgie de l’aorte thoracique descendante. Dérivation partielle entre l’artère pulmonaire et l’artère fémorale. Nouv Press Med. 1980;9:1703–4.

    CAS  Google Scholar 

  96. Hollier LH, Symmonds JB, Pairolero PC, et al. Thoraco-abdominal aortic aneurysm repair: analysis of postoperative morbidity. Arch Surg. 1988;123:871–5.

    Article  CAS  PubMed  Google Scholar 

  97. Safi HJ, Miller CC, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoraco-abdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58–68.

    Article  CAS  PubMed  Google Scholar 

  98. Acher CW, Wynn MM, Mell MW, Telera G, Hoch JR. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg. 2008;248:529–40.

    PubMed  Google Scholar 

  99. Furukawa K, Kamohara K, Nojiri J, Egashira Y, Okazaki Y, Kudo S, et al. Operative strategy for descending and thoracoabdominal aneurysm repair with preoperative demonstration of the Adamkiewicz artery. Ann Thorac Surg. 2010;90:1840–6.

    Article  PubMed  Google Scholar 

  100. Svensson LG, Crawford ES. Aortic dissection and aortic aneurysm surgery: clinical observations, experimental investigations and statistical analyses. Pat II. Curr Prob Surg. 1992;29:915–1057.

    Article  Google Scholar 

  101. Maughan RE, Mohan C, Levy R, Cunnigham JN, Jacobowitz I, Marini C. Effects of exsanguination and sodium nitroprusside on compliance of the spinal canal during aortic occlusion. J Surg Res. 1992;52:571–6.

    Article  CAS  PubMed  Google Scholar 

  102. McCullough JL, Hollier LH, Nugent M. Paraplegia after thoracic occlusion: influence of cerebrospinal fluid drainage. J Vasc Surg. 1988;7:153–60.

    Article  CAS  PubMed  Google Scholar 

  103. Acher CW, Wynn MM, Hoch JR, Popic PM, Turnispeed WD. Combined use of CSF drainage and naloxone reduces the risk of paraplegia in thoraco-abdominal aneurysm repair. J Vasc Surg. 1994;19:236–46.

    Article  CAS  PubMed  Google Scholar 

  104. Svensson LG, Hess KR, D’Agostino RS, Entrup RH, Hreib K, Kimmel WA, Naldony E, Sahian DM. Reduction of neurologic injury after high-risk thoraco-abdominal aortic operations. Ann Thorac Surg. 1998;66:132–8.

    Article  CAS  PubMed  Google Scholar 

  105. Safi HJ, Bartoli S, Hess KR, Shenaq SS, Viets JR, Butl GR, Scheinbaum R, Derr HK, Maulsby R, Rivera VM. Neurologic deficit in patients at high risk with thoraco-abdominal aortic aneurysms: the role of cerebral spinal fluid drainage and distal perfusion. J Vasc Surg. 1994;20:434–43.

    Article  CAS  PubMed  Google Scholar 

  106. Etz CD, Luehr M, Kari FA, Bodian CA, Smego D, Plestis KA, et al. Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg. 2008;135:324–30.

    Article  PubMed  Google Scholar 

  107. Schnell L, Schneider R, Kolbeck R, Barde Y-A. Neurotrophin-3 enhances sprouting of cortico-spinal tract during development and after adult spinal cord lesion. Nature. 1994;367:170–3.

    Article  CAS  PubMed  Google Scholar 

  108. Tsirka S, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature. 1995;377:340–1.

    Article  CAS  PubMed  Google Scholar 

  109. Hagerdal M, Harp J, Nilson L, Siesjö BK. The effect of induced hypothermia upon oxygen consumption in rat brain. J Neurochem. 1975;24:311–6.

    Article  CAS  PubMed  Google Scholar 

  110. Marsala M, Vanicky I, Yaksh TL. Effects of graded hypothermia (27°C to 34°C) on behavioral function, histopathology and spinal cord blood flow after spinal cord ischemia in rat. Stroke. 1994;25:2038–46.

    Article  CAS  PubMed  Google Scholar 

  111. Nakashima K, Todd MM, Warner DS. The relationship between cerebral metabolic rate and ischemic depolarization: a comparison of the effects of hypothermia, pentobarbital and isoflurane. Anaesthesiology. 1995;82:1199–208.

    Article  CAS  Google Scholar 

  112. Fox SL, Blackstone E, Kirklin JW. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1984;87:658–64.

    CAS  PubMed  Google Scholar 

  113. Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism and renal function during hypothermia. Anaesthesiology. 1991;75:1130–6.

    Article  Google Scholar 

  114. Busto R, Globus MY, Dietrich R, et al. Effects of mild hypothermia on ischemia induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20:904–10.

    Article  CAS  PubMed  Google Scholar 

  115. Ginsberg MD, Globus MY, Dietrich R, et al. Temperature modulation in ischemic brain injury: a synthesis of recent advances. Prog Brain Res. 1993;96:13–22.

    Article  CAS  PubMed  Google Scholar 

  116. Pontius RG, Brockman HL, Hardy EG, Cooley DA, De Bakey ME. The use of hypothermia in the prevention of paraplegia following temporary aortic occlusion: experimental observations. Surgery. 1954;36:33–8.

    CAS  PubMed  Google Scholar 

  117. Owens JC, Prevedel AD, Swan H, et al. Prolonged experimental occlusion of the thoracic aorta during hypothermia. Arch Surg. 1955;70:95–7.

    Article  CAS  Google Scholar 

  118. Parkins WM, Ben M, Vars HM, et al. Tolerance of temporary occlusion of thoracic aorta in normothermic and hypothermic dog. Surgery. 1955;38:38–47.

    CAS  PubMed  Google Scholar 

  119. De Bakey ME, Cooley DA, Creech O Jr. Resection of the aorta for aneurysms and occlusive disease with particular reference to the use of hypothermia. J Am Coll Cardiol. 1955;5:153–7.

    Google Scholar 

  120. Von Segesser LK, Marty B, Mueller X, Ruchat P, Gersbach P, Stump F, Fisher A. Active cooling during open repair of thoraco-abdominal aortic aneurysms improves outcome. Eur J Cardiothorac Surg. 2001;19:411–5.

    Article  Google Scholar 

  121. Borst HG, Scauding A, Rudolph W. Arterio-venous fistula of the aortic arch: repair during deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 1964;48:433–7.

    Google Scholar 

  122. Griepp RB, Stinson EB, Hollingsworth JF, Buchler D. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg. 1975;70:1051–63.

    CAS  PubMed  Google Scholar 

  123. Crawford ES, Saleh SA. Transverse aortic arch aneurysm: improved results of treatment employing new modifications of aortic reconstruction and hypothermic circulatory arrest. Ann Surg. 1981;194:180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kouchoukos NT, Wareing TH, Izomuto H, Klausing W, Abboud N. Elective hypothermic cardiopulmonary bypass and circulatory arrest for spinal cord protection during operations on the thoraco-abdominal aorta. J Thorac Cardiovasc Surg. 1990;99:659–64.

    CAS  PubMed  Google Scholar 

  125. Rokkas CK, Sundaresan S, Shuman TA, Palazzo RS, Nitta T, Despotis GJ, Burns T, Wareing TH, Kouchoukos NT. Profound systemic hypothermia protects the spinal cord in a primate model of spinal cord ischemia. J Thorac Cardiovasc Surg. 1993;106:1024–35.

    CAS  PubMed  Google Scholar 

  126. Kouchoukos NT. Spinal cord ischemic injury: is it preventable? Semin Thorac Cardiovasc Surg. 1991;3:323–8.

    CAS  PubMed  Google Scholar 

  127. Kieffer E, Koskas F, Walden R, Godet G, Le Blevec D, Bahnini A, Bertrand M, Fleuron MH. Hypothermic circulatory arrest for thoracic aneurysmectomy through left-sided thoracotomy. J Vasc Surg. 1994;19:457–61.

    Article  CAS  PubMed  Google Scholar 

  128. Kouchoukos NT, Masetti P, Rokkas CK, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoraco-abdominal aorta. Ann Thorac Surg. 2002;74:S1885–7.

    Article  PubMed  Google Scholar 

  129. Kouchoukos NT, Kulil A, Castner CF. Outcomes after thoraco-abdominal aortic aneurysm repair using hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2013;145:S139–41.

    Article  PubMed  Google Scholar 

  130. Fehrenbacher JW, Siderys H, Terry C, Kuhn J, Corvera JS. Early and late results of descending thoracic and thoracoabdominal aortic aneurysm open repair with deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 2010;140:S154–60.

    Article  PubMed  Google Scholar 

  131. Emery M, Lucas JH. Ultrastructural damage and neuritic beading in cold-stressed spinal neurons with comparison to NMDA and A23187 toxicity. Brain Res. 1995;692:161–73.

    Article  CAS  PubMed  Google Scholar 

  132. Negrin JJ. Selective local hypothermia in neurosurgery. NY State J Med. 1961;1:2951–65.

    Google Scholar 

  133. Acosta-Rua GJ. Treatment of traumatic paraplegic patients by localized cooling of the spinal cord. J Iowa Med Soc. 1970;LX:326–8.

    Google Scholar 

  134. Lucas JH, Wang GF, Gross GW. Paradoxical effects of hypothermia on survival of lesioned and uninjured mammalian spinal neurons. Brain Res. 1990;517:354–7.

    Article  CAS  PubMed  Google Scholar 

  135. Bissonnette B, Pellerin L, Ravussin P, Daven VB, Magistretti PJ. Deep hypothermia and re-warming alters glutamate levels and glycogen content in cultured astrocytes. Anaesthesiology. 1999;91:1763–9.

    Article  CAS  Google Scholar 

  136. Albin MS, White RJ, Acosta-Rua GJ, et al. Study of functional recovery produced by delayed localized cooling after spinal cord injury in primates. J Neurosurg. 1968;29:113–20.

    Article  CAS  PubMed  Google Scholar 

  137. Colon R, Frazier OH, Cooley DA, McAllister HA. Hypothermic regional perfusion for protection of the spinal cord during periods of ischemia. Ann Thorac Surg. 1987;43:639–43.

    Article  CAS  PubMed  Google Scholar 

  138. Kaschner AG, Sandmann W, Kniemeyer HW, et al. Evaluation of epidural perfusion cooling to protect the spinal cord during thoracic aortic cross-clamping: monitoring of evoked electrogram. J Cardiovasc Surg. 1985;26:129–35.

    Google Scholar 

  139. Svenssson LG, Crawfoprd ES, Patel V, Mc Lean TR, Jones JW, De Bakey ME. Spinal oxygenation, blood supply localization, cooling and function with aortic clamping. Ann Thorac Surg. 1992;54:74–9.

    Article  Google Scholar 

  140. Berguer R, Porto J, Fedorenko B, Dragovic L. Selective deep hypothermia of the spinal cord prevents paraplegia after aortic cross-clamping in the dog model. J Vasc Surg. 1992;15:62–71.

    Article  CAS  PubMed  Google Scholar 

  141. Cambria RP, Brewster DC, Moncure AC, et al. Recent experience with thoraco-abdominal aneurysms repair. Arch Surg. 1989;124:620–4.

    Article  CAS  PubMed  Google Scholar 

  142. Cambria RP, Davison JK, Carter C, Brewster DC, Chang Y, Clarck KA, Atamian S. Epidural cooling for spinal protection during thoraco-abdominal repair: a five-year experience. J Vasc Surg. 2000;31:1093–102.

    Article  CAS  PubMed  Google Scholar 

  143. Del Rossi AJ, Cernaianu AC, Cilley JH, Spence RK, Camishion RC, Yu Y, Costabile JP, Vertrees RA. Preventive effect of fluosol-DA for paraplegia encountered after surgical treatment of the thoracic aorta. J Thorac Cardiovasc Surg. 1990;99:665–9.

    Google Scholar 

  144. Maugham RE, Mohan C, Nathan IM, Damiani P, Jacobowitz IJ, Cunnigham JN, Marini P. Intrathecal perfusion of an oxygenated perfluorocarbon prevents paraplegia after aortic occlusion. Ann Thorac Surg. 1992;54:818–25.

    Article  Google Scholar 

  145. Lashinger JC, Cunnigham JN, Baumann FG, Cooper MM, Krieger KH, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. III: intraoperative identification of vessels critical to spinal cord blood supply. J Thorac Cardiovasc Surg. 1987;87:271–4.

    Google Scholar 

  146. Galla JD, Ergin MA, Sadeghi AM, Lansmann SL, Danto J, Griepp RB. A new technique using somatosensory evoked potential guidance during descending and thoraco-abdominal aortic repairs. J Card Surg. 1994;9:662–72.

    Article  CAS  PubMed  Google Scholar 

  147. Biglioli P, Roberto M, Cannata A, Parolari A, Fumero A, Grillo F, Maggioni M, Coggi G, Spirito R. Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg. 2004;127:1188–92.

    Article  PubMed  Google Scholar 

  148. Rokkas CK: discussion of Griepp RB, Ergin MA, Galla JD et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg.1996;112:1215.

    Google Scholar 

  149. Dommisse GF. The arteries and veins of the human spinal cord from birth. Edinburgh: Churchill Livingstone; 1975.

    Google Scholar 

  150. Griepp RB, Griepp E. Spinal cord perfusion and protection during descending thoracic and thoraco-abdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83:S865–9.

    Article  PubMed  Google Scholar 

  151. Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82:1670–7.

    Article  PubMed  Google Scholar 

  152. Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin HM, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141:1020–8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Etz CD, Kari FA, Mueller CS, Brenner RM, Lin HM, Griepp RB. The collateral network concept: remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg. 2011;141:1029–36.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zoli S, Etz CD, Roder F, Brenner RM, Bodian CA, Kleinman G, et al. Experimental two-stage simulated repair of extensive thoracoabdominal aneurysms reduces paraplegia risk. Ann Thorac Surg 2010;90:722-729.

    Article  PubMed  Google Scholar 

  155. Etz CD, Zoli S, Mueller CS, Bodian CA, Di Luozzo G, Lazala R, et al. Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J Thorac Cardiovasc Surg. 2010;139:1464–72.

    Article  PubMed  Google Scholar 

  156. Luehr M, Salameh A, Haunschmid J, Hoyer A, Girrnach FF, von Aspern K, et al. Minimally invasive segmental artery coil embolization for preconditioning of the spinal cord collateral network before one-stage descending and thoracoabdominal aneurysm repair. Innovations (Phila). 2014;9:60–5.

    Google Scholar 

  157. De Haan P, Kalkman CJ, Jacobs MJ. Pharmacologic neuroprotection in experimental spinal cord ischemia: a systematic review. J Neurosurg Anesthesiol. 2001;13:3–12.

    Article  PubMed  Google Scholar 

  158. Mauney MC, Blackbourne LH, Langenburg SE, et al. Prevention of spinal cord injury after repair of the thoracic or thoracoabdominal aorta. Ann Thorac Surg. 1995;59:245–51.

    Article  CAS  PubMed  Google Scholar 

  159. Marini CP, Cunningham JN. Issues surrounding spinal cord protection. Adv Card Surg. 1993;4:89–107.

    CAS  PubMed  Google Scholar 

  160. Lang-Lazdunski L, Bachet J. Pharmacological spinal cord protection with magnesium during replacement of the thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2001;72:2180–1.

    Article  CAS  PubMed  Google Scholar 

  161. Kanellopoulos GK, Kato H, Wu Y, et al. Neuronal cell death in the ischemic spinal cord : the effect of methylprednisolone. Ann Thorac Surg. 1997;64:1279–86.

    Article  CAS  PubMed  Google Scholar 

  162. Svensson LG, Stewart RW, Cosgrove DM, et al. Intrathecal papaverine for the prevention of paraplegia after operation on the thoracic or thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1988;96:823–9.

    CAS  PubMed  Google Scholar 

  163. Baskin DS, Hosobuchi Y. Naloxone reversal of ischemic neurologic deficit in man. Lancet. 1981;2:272–5.

    Article  CAS  PubMed  Google Scholar 

  164. Bracken MB, Shepard MJ, Collins WF, et al. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N Engl J Med. 1990;322:1405–11.

    Article  CAS  PubMed  Google Scholar 

  165. Vacanti FX, Ames A. Mild hypothermia and mg2+ protect against irreversible damage during CNS ischemia. Stroke. 1984;15:695–8.

    Article  CAS  PubMed  Google Scholar 

  166. Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, Bachet JE, Carrel TP, Grabenwöger M, Schepens MA, Czerny M. Contemporary spinal cord protection during thoracic and thoraco-abdominal aortic surgery and endovascular aortic repair. A position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery. Eur J Cardiothorac Surg. 2015;47:943–57.

    Article  PubMed  Google Scholar 

  167. Amato A, Stolf N. Anatomy of spinal blood supply. J Vasc Bras. 2015;14(3):248–52.

    Google Scholar 

  168. Nojiri J, et al. The Adamkiewicz artery: demonstration by intra-arterial computed tomographic angiography. Eur J Cardiothorac Surg. 2007;31(2):249–55.

    Article  PubMed  Google Scholar 

  169. Sun JP, Svensson LG. Ischemia, reperfusion and no-reflow phenomenon. In: Svensson LG, Cawford ES, editors. Cardiovascular and vascular diseases of the aorta. Philadelphia: W.B. Saunders; 1997.

    Google Scholar 

  170. Estrera AL, et al. Adjuncts during surgery of the thoracoabdominal aorta and their impact on neurologic outcome: distal aortic perfusion and cerebrospinal fluid drainage. Multimed Man Cardiothorac Surg. 2006; https://doi.org/10.1510/mmcts.2006.001933.

  171. Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, Bachet JE, Carrel TP, Grabenwöger M, Schepens MA, Czerny M. Contemporary spinal cord protection during thoracic and thoraco-abdominal aortic surgery and endovascular aortic repair. A position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery. Eur J Cardiothorac Surg. 2015;47:943–57.

    Article  PubMed  Google Scholar 

  172. Kieffer E. Encyclopédie Médico-Chirurgicale. Techniques chirugicales. Chirurgie de l’Aorte Thoraco-Abdominale. Paris: Elsevier; 1993. p. 43–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachet, J. (2019). Spinal Cord Protection in Thoracic Aortic Surgery. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_78

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics