Skip to main content

Multidetector Computed Tomography of the Aorta

  • Chapter
  • First Online:
  • 1680 Accesses

Abstract

For many years, invasive angiography was considered the gold standard for the assessment of aortic abnormalities. However, the complexities and complications inherent to invasive imaging have meant that more recently non-invasive techniques such as echocardiography, magnetic resonance imaging (MRI) and multidetector computed tomography (MDCT) have been increasingly used to assess cardiovascular disorders. In particular, MDCT has emerged as a fundamental tool for the diagnosis and pre-surgical work-up of many aortic pathologies due to its high spatial resolution, large area of coverage and short scan time; as a result it is now one of the most widely used modalities for the detection of abnormalities of the aorta. The purpose of this chapter is to review the spectrum of aortic conditions—both acquired and congenital—that can be detected by MDCT, with particular attention to the anatomical and imaging features of aortic disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Flohr TG, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ. Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005;235:756–73.

    Article  Google Scholar 

  2. Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep. 2010;12:68–75.

    Article  Google Scholar 

  3. Hu H, He HD, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology. 2000;215:55–62.

    Article  CAS  Google Scholar 

  4. McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26:2223–30.

    Article  CAS  Google Scholar 

  5. Chin AS, Fleischmann D. State-of-the-art computed tomography angiography of acute aortic syndrome. Semin Ultrasound CT MR. 2012;33:222–34.

    Article  Google Scholar 

  6. Roos JE, Willmann JK, Weishaupt D, Lachat M, Marincek B, Hilfiker PR. Thoracic aorta: motion artifact reduction with retrospective and prospective electrocardiography-assisted multi-detector row CT. Radiology. 2002;222:271–7.

    Article  Google Scholar 

  7. Arnoldi E, Johnson TR, Rist C, et al. Adequate image quality with reduced radiation dose in prospectively triggered coronary CTA compared with retrospective techniques. Eur Radiol. 2009;19:2147–55.

    Article  Google Scholar 

  8. Wu W, Budovec J, Foley WD. Prospective and retrospective ECG gating for thoracic CT angiography: a comparative study. AJR Am J Roentgenol. 2009;193:955–63.

    Article  Google Scholar 

  9. Blanke P, Bulla S, Baumann T, et al. Thoracic aorta: prospective electrocardiographically triggered CT angiography with dual-source CT—feasibility, image quality, and dose reduction. Radiology. 2010;255:207–17.

    Article  Google Scholar 

  10. Bolen MA, Popovic ZB, Tandon N, Flamm SD, Schoenhagen P, Halliburton SS. Image quality, contrast enhancement, and radiation dose of ECG-triggered high-pitch CT versus non-ECG-triggered standard-pitch CT of the thoracoabdominal aorta. AJR Am J Roentgenol. 2012;198:931–8.

    Article  Google Scholar 

  11. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31:340–6.

    Article  Google Scholar 

  12. Rybicki FJ, Otero HJ, Steigner ML, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24:535–46.

    Article  Google Scholar 

  13. Kumamaru KK, Steigner ML, Soga S, et al. Coronary enhancement for prospective ECG-gated single R-R axial 320-MDCT angiography: comparison of 60- and 80-mL iopamidol 370 injection. AJR Am J Roentgenol. 2011;197:844–50.

    Article  Google Scholar 

  14. Goetti R, Baumuller S, Feuchtner G, et al. High-pitch dual-source CT angiography of the thoracic and abdominal aorta: is simultaneous coronary artery assessment possible? AJR Am J Roentgenol. 2010;194:938–44.

    Article  Google Scholar 

  15. Halpern EJ. Triple-rule-out CT angiography for evaluation of acute chest pain and possible acute coronary syndrome. Radiology. 2009;252:332–45.

    Article  Google Scholar 

  16. Gruettner J, Fink C, Walter T, et al. Coronary computed tomography and triple rule out CT in patients with acute chest pain and an intermediate cardiac risk profile. Part 1: impact on patient management. Eur J Radiol. 2013;82:100–5.

    Article  Google Scholar 

  17. Takakuwa KM, Halpern EJ. Evaluation of a triple “rule-out” coronary CT angiography protocol: use of 64-Section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome. Radiology. 2008;248:438–46.

    Article  Google Scholar 

  18. Henzler T, Gruettner J, Meyer M, et al. Coronary computed tomography and triple rule out CT in patients with acute chest pain and an intermediate cardiac risk for acute coronary syndrome: part 2: economic aspects. Eur J Radiol. 2013;82:106–11.

    Article  Google Scholar 

  19. Zhang LJ, Zhao YE, Schoepf UJ, et al. Seventy-peak kilovoltage high-pitch thoracic aortic CT angiography without ECG gating: evaluation of image quality and radiation dose. Acad Radiol. 2015;22:890–7.

    Article  Google Scholar 

  20. Rubin GD, Dake MD, Napel SA, McDonnell CH, Jeffrey RB Jr. Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. Radiology. 1993;186:147–52.

    Article  CAS  Google Scholar 

  21. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256:32–61.

    Article  Google Scholar 

  22. Vlahos I, Godoy MC, Naidich DP. Dual-energy computed tomography imaging of the aorta. J Thorac Imaging. 2010;25:289–300.

    Article  Google Scholar 

  23. Nakayama Y, Awai K, Funama Y, et al. Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol. 2006;187:490–7.

    Article  Google Scholar 

  24. Ravenel JG, McAdams HP. Multiplanar and three-dimensional imaging of the thorax. Radiol Clin N Am. 2003;41:475–89.

    Article  Google Scholar 

  25. Catalano C, Fraioli F, Laghi A, et al. Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology. 2004;231:555–63.

    Article  Google Scholar 

  26. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics. 2005;25:1409–28.

    Article  Google Scholar 

  27. Wolak A, Gransar H, Thomson LE, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. JACC Cardiovasc Imaging. 2008;1:200–9.

    Article  Google Scholar 

  28. Vilacosta I, Roman JA. Acute aortic syndrome. Heart. 2001;85:365–8.

    Article  CAS  Google Scholar 

  29. Svensson LG, Labib SB, Eisenhauer AC, Butterly JR. Intimal tear without hematoma: an important variant of aortic dissection that can elude current imaging techniques. Circulation. 1999;99:1331–6.

    Article  CAS  Google Scholar 

  30. Erbel R, Alfonso F, Boileau C, et al. Diagnosis and management of aortic dissection. Eur Heart J. 2001;22:1642–81.

    Article  CAS  Google Scholar 

  31. Hiratzka LF, Bakris GL, Beckman JA, et al. ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:e266–369.

    PubMed  Google Scholar 

  32. Williams DM, Joshi A, Dake MD, Deeb GM, Miller DC, Abrams GD. Aortic cobwebs: an anatomic marker identifying the false lumen in aortic dissection—imaging and pathologic correlation. Radiology. 1994;190:167–74.

    Article  CAS  Google Scholar 

  33. LePage MA, Quint LE, Sonnad SS, Deeb GM, Williams DM. Aortic dissection: CT features that distinguish true lumen from false lumen. AJR Am J Roentgenol. 2001;177:207–11.

    Article  CAS  Google Scholar 

  34. Nelsen KM, Spizarny DL, Kastan DJ. Intimointimal intussusception in aortic dissection: CT diagnosis. AJR Am J Roentgenol. 1994;162:813–4.

    Article  CAS  Google Scholar 

  35. Karabulut N, Goodman LR, Olinger GN. CT diagnosis of an unusual aortic dissection with intimointimal intussusception: the wind sock sign. J Comput Assist Tomogr. 1998;22:692–3.

    Article  CAS  Google Scholar 

  36. Daily PO, Trueblood HW, Stinson EB, Wuerflein RD, Shumway NE. Management of acute aortic dissections. Ann Thorac Surg. 1970;10:237–47.

    Article  CAS  Google Scholar 

  37. Williams DM, Lee DY, Hamilton BH, et al. The dissected aorta: Part III. Anatomy and radiologic diagnosis of branch-vessel compromise. Radiology. 1997;203:37–44.

    Article  CAS  Google Scholar 

  38. Yoshida S, Akiba H, Tamakawa M, et al. Thoracic involvement of type A aortic dissection and intramural hematoma: diagnostic accuracy—comparison of emergency helical CT and surgical findings. Radiology. 2003;228:430–5.

    Article  Google Scholar 

  39. Fleischmann D, Rubin GD, Paik DS, et al. Stair-step artifacts with single versus multiple detector-row helical CT. Radiology. 2000;216:185–96.

    Article  CAS  Google Scholar 

  40. Stanson AW, Kazmier FJ, Hollier LH, et al. Penetrating atherosclerotic ulcers of the thoracic aorta: natural history and clinicopathologic correlations. Ann Vasc Surg. 1986;1:15–23.

    Article  CAS  Google Scholar 

  41. Hayashi H, Matsuoka Y, Sakamoto I, et al. Penetrating atherosclerotic ulcer of the aorta: imaging features and disease concept. Radiographics. 2000;20:995–1005.

    Article  CAS  Google Scholar 

  42. Kazerooni EA, Bree RL, Williams DM. Penetrating atherosclerotic ulcers of the descending thoracic aorta: evaluation with CT and distinction from aortic dissection. Radiology. 1992;183:759–65.

    Article  CAS  Google Scholar 

  43. Castaner E, Andreu M, Gallardo X, Mata JM, Cabezuelo MA, Pallardo Y. CT in nontraumatic acute thoracic aortic disease: typical and atypical features and complications. Radiographics. 2003;23:S93–110.

    Article  Google Scholar 

  44. Nienaber CA, von KY, Petersen B, et al. Intramural hemorrhage of the thoracic aorta. Diagnostic and therapeutic implications. Circulation. 1995;92:1465–72.

    Article  CAS  Google Scholar 

  45. Lemos AA, Pezzullo JC, Fasani P, et al. Can the unenhanced phase be eliminated from dual-phase CT angiography for chest pain? Implications for diagnostic accuracy in acute aortic intramural hematoma. AJR Am J Roentgenol. 2014;203:1171–80.

    Article  Google Scholar 

  46. Sommer WH, Graser A, Becker CR, et al. Image quality of virtual noncontrast images derived from dual-energy CT angiography after endovascular aneurysm repair. J Vasc Interv Radiol. 2010;21:315–21.

    Article  Google Scholar 

  47. Numburi UD, Schoenhagen P, Flamm SD, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol. 2010;195:486–93.

    Article  Google Scholar 

  48. Bickerstaff LK, Pairolero PC, Hollier LH, et al. Thoracic aortic aneurysms: a population-based study. Surgery. 1982;92:1103–8.

    CAS  PubMed  Google Scholar 

  49. Yu T, Zhu X, Tang L, Wang D, Saad N. Review of CT angiography of aorta. Radiol Clin N Am. 2007;45:461–83.

    Article  Google Scholar 

  50. Hannuksela M, Lundqvist S, Carlberg B. Thoracic aorta—dilated or not? Scand Cardiovasc J. 2006;40:175–8.

    Article  Google Scholar 

  51. Mao SS, Ahmadi N, Shah B, et al. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad Radiol. 2008;15:827–34.

    Article  Google Scholar 

  52. Lu TL, Huber CH, Rizzo E, Dehmeshki J, von Segesser LK, Qanadli SD. Ascending aorta measurements as assessed by ECG-gated multi-detector computed tomography: a pilot study to establish normative values for transcatheter therapies. Eur Radiol. 2009;19:664–9.

    Article  Google Scholar 

  53. Devereux RB, de Simone G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110:1189–94.

    Article  Google Scholar 

  54. Gonda RL Jr, Gutierrez OH, Azodo MV. Mycotic aneurysms of the aorta: radiologic features. Radiology. 1988;168:343–6.

    Article  Google Scholar 

  55. Posniak HV, Olson MC, Demos TC, Benjoya RA, Marsan RE. CT of thoracic aortic aneurysms. Radiographics. 1990;10:839–55.

    Article  CAS  Google Scholar 

  56. Agarwal PP, Chughtai A, Matzinger FR, Kazerooni EA. Multidetector CT of thoracic aortic aneurysms. Radiographics. 2009;29:537–52.

    Article  Google Scholar 

  57. Kimura-Hayama ET, Melendez G, Mendizabal AL, Meave-Gonzalez A, Zambrana GF, Corona-Villalobos CP. Uncommon congenital and acquired aortic diseases: role of multidetector CT angiography. Radiographics. 2010;30:79–98.

    Article  Google Scholar 

  58. Warnes CA. Transposition of the great arteries. Circulation. 2006;114:2699–709.

    Article  Google Scholar 

  59. Squarcia U, Macchi C. Transposition of the great arteries. Curr Opin Pediatr. 2011;23:518–22.

    Article  Google Scholar 

  60. Baron RL, Gutierrez FR, Sagel SS, Levitt RG, McKnight RC. CT of anomalies of the mediastinal vessels. AJR Am J Roentgenol. 1981;137:571–6.

    Article  CAS  Google Scholar 

  61. Mustard W. Successful two-stage correction of transposition of the great vessels. Surgery. 1964;55:469–72.

    CAS  PubMed  Google Scholar 

  62. Jatene AD, Fontes VF, Paulista PP, de Souza LC, Neger F, Galantier M, et al. Successful anatomic correction of transposition of the great vessels. A preliminary report. Arq Bras Cardiol. 1975;28:461–4.

    CAS  PubMed  Google Scholar 

  63. Salerno TA, Ricci M. Recognition of greatness: “the Jatene operation”. J Thorac Cardiovasc Surg. 2008;136:1404.

    Article  Google Scholar 

  64. Takasugi JE, Godwin JD, Chen JT. CT in congenitally-corrected transposition of the great vessels. Comput Radiol. 1987;11:215–21.

    Article  CAS  Google Scholar 

  65. Nielsen JC, Parness IA. Anatomy of a criss-cross heart. Circulation. 2002;106:e41.

    Article  Google Scholar 

  66. Ikeda M, Hirosawa K. Tetralogy of fallot. Circulation. 1968;38:21–34.

    Article  CAS  Google Scholar 

  67. Shinebourne EA, Babu-Narayan SV, Carvalho JS. Tetralogy of Fallot: from fetus to adult. Heart. 2006;92:1353–9.

    Article  Google Scholar 

  68. Pigula FA, Khalil PN, Mayer JE, del Nido PJ, Jonas RA. Repair of tetralogy of Fallot in neonates and young infants. Circulation. 1999;100:II157–61.

    Article  CAS  Google Scholar 

  69. Park CS, Lee JR, Lim H-G, Kim W-H, Kim YJ. The long-term result of total repair for tetralogy of Fallot. Eur J Cardiothorac Surg. 2010;38:311–7.

    Article  Google Scholar 

  70. Ferdman B, Singh G. Persistent truncus arteriosus. Curr Treat Options Cardiovasc Med. 2003;5:429–38.

    Article  Google Scholar 

  71. Collett RW, Edwards JE. Persistent truncus arteriosus; a classification according to anatomic types. Surg Clin North Am. 1949;29:1245–70.

    Article  CAS  Google Scholar 

  72. Van Praagh R, Van Praagh S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol. 1965;16:406–25.

    Article  Google Scholar 

  73. Tlaskal T, Chaloupecky V, Hucin B, Gebauer R, Krupickova S, Reich O, et al. Long-term results after correction of persistent truncus arteriosus in 83 patients. Eur J Cardiothorac Surg. 2010;37:1278–84.

    Article  Google Scholar 

  74. Mert M, Paker T, Akcevin A, Cetin G, Ozkara A, Saltik L, et al. Diagnosis, management, and results of treatment for aortopulmonary window. Cardiol Young. 2004;14:506–11.

    Article  Google Scholar 

  75. Maeda E, Akahane M, Kato N, Hayashi N, Koga H, Yamada H, et al. Assessment of major aortopulmonary collateral arteries with multidetector-row computed tomography. Radiat Med. 2006;24:378–83.

    Article  Google Scholar 

  76. Cheng TO. Marfan syndrome, not Marfan’s syndrome. Circulation. 1999;99:166–7.

    PubMed  Google Scholar 

  77. Keane MG, Pyeritz RE. Medical management of Marfan syndrome. Circulation. 2008;117:2802–13.

    Article  Google Scholar 

  78. Yuan S-M, Jing H. Marfan’s syndrome: an overview. Sao Paulo Med J. 2010;128:360–6.

    Article  Google Scholar 

  79. Bluemke DA. Pseudocoarctation of the aorta. Cardiol J. 2007;14:205–6.

    PubMed  Google Scholar 

  80. Gaupp RJ, Fagan CJ, Davis M, Epstein NE. Pseudocoarctation of the aorta. J Comput Assist Tomogr. 1981;5:571–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Rubens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindsay, A.C., Nair, A., Rubens, M.B. (2019). Multidetector Computed Tomography of the Aorta. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_25

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics