Skip to main content

Role of Biomechanical Stress in the Pathology of the Aorta

  • Chapter
  • First Online:
Surgical Management of Aortic Pathology

Abstract

The study of the pathology of the aorta must necessarily take into account the role of biomechanical stress that continuously impact on the biology of the cellular and molecular components of its wall. In mammals, the circulation requires a highly organized system, in which organ-regulated directional blood flow is propelled through the conductance arterial tree with a defined wall structure, by the pumping action of the mammalian heart.

A high blood pressure is therefore a compulsory biomechanical stress in human aortic biology. Fluids (radial convection) and particulate components (collision) play different and complementary role in the determinism of aortic pathologies and the relative complications linked to biomechanical stress such as atherosclerotic and aneurysmal diseases.

Hemodynamics in the phylogenetically selected, highly pressurized and branched arterial tree is indeed the most important common denominator of all arterial pathologies. Understanding the role played by biomechanical stress is therefore crucial for researchers and clinicians working within the field of aortic diseases, and nothing makes sense in the arterial pathology, except in the light of hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bank AJ, Wang H, Holte JE, Shammas R, Kubo SH. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation. 1996;94:3263–70.

    Article  CAS  Google Scholar 

  2. Cantini C, Kieffer P, Corman B, Liminana P, Atkinson J, Lartaud-Idjouadiene I. Aminoguanidine and aortic wall mechanics, structure, and composition in aged rats. Hypertension. 2001;38:943–8.

    Article  CAS  Google Scholar 

  3. O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15:426–44.

    Article  Google Scholar 

  4. O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20:365–80.

    Article  Google Scholar 

  5. Pythoud F, Stergiopulos N, Westerhof N, Meister JJ. Method for determining distribution of reflection sites in the arterial system. Am J Phys. 1996;271:H1807–13.

    CAS  Google Scholar 

  6. McEniery CM, Yasmin N, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46:1753–60.

    Article  Google Scholar 

  7. Laurent SP, Boutouyrie P. Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension. 2007;49:1202–6.

    Article  CAS  Google Scholar 

  8. O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension. 2005;45:652–8.

    Article  Google Scholar 

  9. Back M, Gasser TC, Michel B, Caliguri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res. 2013;99:232–41.

    Article  Google Scholar 

  10. Kolodgie FD, Burke AP, Nakazawa G, Virmani R. Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol. 2007;27:986–9.

    Article  CAS  Google Scholar 

  11. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res. 2012;95:194–204.

    Article  CAS  Google Scholar 

  12. Michel JB, Thaunat O, Houard X, Meilhac O, Caliguri G, Nicoletti A. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol. 2007;27:1259–68.

    Article  CAS  Google Scholar 

  13. Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97:163–79.

    Article  Google Scholar 

  14. Michel JB. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler Thromb Vasc Biol. 2003;23:2146–54.

    Article  CAS  Google Scholar 

  15. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10:75–82.

    Article  CAS  Google Scholar 

  16. Isermann P, Lammerding J. Nuclear mechanics and mechanotransduction in health and disease. Curr Biol. 2013;23:1113–21.

    Article  Google Scholar 

  17. Chen LJ, Wei SY, Chiu JJ. Mechanical regulation of epigenetics in vascular biology and pathobiology. J Cell Mol Med. 2013;17:437–48.

    Article  CAS  Google Scholar 

  18. Aarts PA, van den Broek SA, Prins GW, Kulken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988;8:819–24.

    Article  CAS  Google Scholar 

  19. Ho-Tin-Noe B, Le Dall J, Gomez D, Louedec L, Vranckx R, El-bouchtaoui M, Legres L, Meilhac O, Michel JB. Early atheroma-derived agonists of peroxisome proliferator-activated receptor-gamma trigger intramedial angiogenesis in a smooth muscle cell-dependent manner. Circ Res. 2011;109:1003–14.

    Article  CAS  Google Scholar 

  20. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–44.

    Article  CAS  Google Scholar 

  21. Madureira PA, Surette AP, Phipps KD, Taboski MA, Miller VA, Waisman DM. The role of the annexin A2 heterotetramer (AIIt) in vascular fibrinolysis. Blood. 2011;118:4789–97.

    Article  CAS  Google Scholar 

  22. DiDonato JA, Huang Y, Aulak KS, Even-Or O, Gerstenecker G, Gogonea V, Wu Y, Fox PL, et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation. 2013;128:1644–55.

    Article  CAS  Google Scholar 

  23. Virmani R, Avolio AP, Mergner WJ, Robinowitz M, Herderick EE, Cornhill JF, Guo SY, Liu TH, Ou DY, O’Rourke M. Effect of aging on aortic morphology in populations with high and low prevalence of hypertension and atherosclerosis. Comparison between occidental and Chinese communities. Am J Pathol. 1991;139:1119–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chow B, Rabkin SW. The relationship between arterial stiffness and heart failure with preserved ejection fraction: a systemic meta-analysis. Heart Fail Rev. 2015;20:291–303.

    Article  Google Scholar 

  25. Sloop GD, Perret RS, Brahney JS, Oalmann M. A description of two morphologic patterns of aortic fatty streaks, and a hypothesis of their pathogenesis. Atherosclerosis. 1998;141:153–60.

    Article  CAS  Google Scholar 

  26. Mohamied Y, Rowland EM, Bailey EL, Sherwin SJ, Schwartz MA, Weinberg PD. Change of direction in the biomechanics of atherosclerosis. Ann Biomed Eng. 2015;43:16–25.

    Article  Google Scholar 

  27. Trachet B, Fraga-Silva RA, Piersigilli A, Tedgui A, Sordet-Dessimoz J, Asolfo A, Van der Donckt C, et al. Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation. Cardiovasc Res. 2015;105:213–22.

    Article  CAS  Google Scholar 

  28. Ho-Tin-Noe B, Michel JB. Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc Med. 2011;21:183–7.

    Article  CAS  Google Scholar 

  29. Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, Allaire E, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res. 2011;90:18–27.

    Article  CAS  Google Scholar 

  30. Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg. 1997;25:916–26.

    Article  CAS  Google Scholar 

  31. Touat Z, Lepage L, Ollivier V, Nataf P, Hvass U, Labreuche J, Jandrot-Perrus M, Michel JB, Jondeau G. Dilation-dependent activation of platelets and prothrombin in human thoracic ascending aortic aneurysm. Arterioscler Thromb Vasc Biol. 2008;28:940–6.

    Article  CAS  Google Scholar 

  32. Jondeau G, Michel JB, Boileau C. The translational science of Marfan syndrome. Heart. 2011;97:1206–14.

    Article  Google Scholar 

  33. Borges LF, Gomez D, Quintana M, Touat Z, Jondeau G, Leclercq A, Meilhac O, Jandrot-Perrus M, Gutierrez PS, Freymuller E, et al. Fibrinolytic activity is associated with presence of cystic medial degeneration in aneurysms of the ascending aorta. Histopathology. 2010;57:917–32.

    Article  Google Scholar 

  34. Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, et al. Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science. 2011;332:358–61.

    Article  CAS  Google Scholar 

  35. Gomez D, Al Haj Zen A, Borges LF, Philippe M, Gutierrez PS, Jondeau G, Michel JB, Vranckx R. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol. 2009;218:131–42.

    Article  CAS  Google Scholar 

  36. Gomez D, Kessler K, Borges LF, Richard B, Touat Z, Ollivier V, Mansilla S, et al. Smad2-dependent protease Nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler Thromb Vasc Biol. 2013;33:2222–32.

    Article  CAS  Google Scholar 

  37. Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, Bonduelle M, et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. Int J Cardiol. 2013;165:14–21.

    Google Scholar 

  38. Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res. 2015;116:1448–61.

    Article  CAS  Google Scholar 

  39. Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004;279:10346–56.

    Article  CAS  Google Scholar 

  40. Tsai TT, Fattori R, Trimarchi S, Isselbacher E, Myrmel T, Evangelista A, Hutchison S, et al. Long-term survival in patients presenting with type B acute aortic dissection: insights from the international registry of acute aortic dissection. Circulation. 2006;114:2226–31.

    Article  Google Scholar 

  41. Sakalihasan N, Nienaber CA, Hustinx R, Lovinfosse P, El Hachemi M, Cheramy-Bien JP, Seidel L, et al. (Tissue PET) Vascular metabolic imaging and peripheral plasma biomarkers in the evolution of chronic aortic dissections. Eur Heart J Cardiovasc Imaging. 2015;16:626–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Caligiuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caligiuri, G., Levy, B.P., Nicoletti, A., Michel, JB. (2019). Role of Biomechanical Stress in the Pathology of the Aorta. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics