Advertisement

Boiler Simulation—Simulating the Water and Steam Flow

  • H. Walter
  • K. Ponweiser
Chapter

Abstract

In boiler construction—depending on the fuel used—we distinguish between “conventional” systems (those that use fossil fuels like oil, gas, or coal) and nuclear plants in which nuclear fuels such as235U are used. The following summary of boiler systems, however, only addresses fossil fuel-fired plants. A brief overview on the main features of reactor theory and nuclear fission, as well as on the construction of nuclear reactors is given in Thomas (1975), Ziegler (1983), Ziegler (1984), Ziegler (1985), Strauß (1992), Weston (2007), Kok (2009), Todreas and Kazimi (2012), or Oka (2014).

Keywords

Steam Generator Flow Instability Natural Circulation Heat Flow Density Heat Recovery Steam Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achard JL, Drew DA, Lahey Jr. RT (1985) The analysis of nonlinear density-wave oscillations in boiling channel. J Fluid Mech 155:213–232MathSciNetMATHCrossRefGoogle Scholar
  2. Albrecht W (1966) Instationäre Wärmespannungen in Hohlzylinder. Konstruktion 18(6):224–231Google Scholar
  3. Albrecht W (1969) Beispiele für instationäre Temperaturverteilungen in Apparatebauteilen. Chemie Ingenieur Technik 41:676–681CrossRefGoogle Scholar
  4. Anderson RP, Bryant LT, Carter JC, Marchaterre JF (1962) Transient analysis of two-phase natural circulation systems. Argonne National Laboratory USAEC Report ANL-6653, Argonne National LaboratoryGoogle Scholar
  5. Aritomi M, Aoki S, Inoue A (1977) Instabilities in parallel channel of forced-convection boiling upflow system, (II) experimental results. J Nucl Sci Tech 14(2):88–96CrossRefGoogle Scholar
  6. Aritomi M, Aoki Sh, Inoue A (1979) Instabilities in parallel channel of forced-convection boiling upflow system, (III) system with different flow conditions between two channels. J Nucl Sci Tech 16(5):343–355CrossRefGoogle Scholar
  7. Aritomi M, Aoki Sh, Narabayashi T (1981) Instabilities in parallel channel of forced-convection boiling upflow system, (IV) instabilities in multi-channel system and with boiling in downcomer. J Nucl Sci Tech 18(5):329–340CrossRefGoogle Scholar
  8. Aritomi M, Aoki Sh, Inoue A (1983) Instabilities in parallel channel of forced-convection boiling upflow system, (V) consideration of density wave instability. J Nucl Sci Tech 20(4):286–301CrossRefGoogle Scholar
  9. Aritomi M, Aoki Sh, Inoue A (1986a) Thermo-hydraulic instabilities in parallel boiling channel systems, Part 1: a non-linear and a linear analytic model. Nucl Eng Des 95:105–116CrossRefGoogle Scholar
  10. Aritomi M, Aoki Sh, Inoue A (1986b) Thermo-hydraulic instabilities in parallel boiling channel systems, Part 2: experimental results. Nucl Eng Des 95:117–127CrossRefGoogle Scholar
  11. Aritomi M, Chiang JH, Nakahashi T, Wataru M, Mori M (1992a) Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors, (I) thermo-hydraulic instabilities. J Nucl Sci Tech 29(7):631–641CrossRefGoogle Scholar
  12. Aritomi M, Chiang JH, Mori M (1992b) Fundamental studies of safty-related thermo-hydraulics of natural circulation boiling parallel channel flow systems under startup conditions (mechanism of geysering in parallel channels). Nucl Saf 33(2):170–182Google Scholar
  13. Aritomi M, Chiang JH, Mori M (1992c) Geysering in parallel boiling channels. J. Nucl Eng Des 141:111–121CrossRefGoogle Scholar
  14. Baars A (2003) Stationäre und instationäre Betriebsbedingungen eines Naturumlaufverdampfers. Progress report VDI 779, VDI Verlag, DüsseldorfGoogle Scholar
  15. Bauer F, Stamatelopoulos GN, Vortemeyer N, Bugge J (2003) Driving coal-fired power plants to over 50% efficiency. VGB PowerTech 83(12):97–100Google Scholar
  16. Bergles AE, Goldberg P, Maulbetsch JP (1967) Acoustic oszillations in high pressure single channel boiling systems. In: Euratom symposium on two-phase flow dynamics, Vol 1. EURATOM, pp 525–550Google Scholar
  17. Bergles AE (1976) Review of instabilities in two-phase systems. In: Kakaç S, Mayinger F (eds) Two-phase flows and heat transfer, Vol 1. Hemisphere Pub., WashingtonGoogle Scholar
  18. Berndt G (1984) Mathematisches Modell eines Naturumlauf-Dampferzeugers zur Störfallsimulation und dessen experimentelle Überprüfung. Dissertation, Technical University of StuttgartGoogle Scholar
  19. Bishop AA, Sandberg RO, Tong LS (1964) Forced convection heat transfer to water at near-critical temperature and subcritical pressures. Argonne National Laboratory, USAEC Report WCAP-2056, Part IIIBGoogle Scholar
  20. Bohnsack G (1971) Das Verhalten des Eisen-II-hydroxides bei höheren Temperaturen. Mitteilung der VGB 51(4):328–338Google Scholar
  21. Bouré JA, Bergles AE, Tong LS (1973) Review of two-phase flow instability. Nucl Eng Des 25:165–192CrossRefGoogle Scholar
  22. Brandt F (1999b) Dampferzeuger: Kesselsysteme, Energiebilanz, Strömungstechnik, 2nd edn. Vol. 3 of FDBR – Fachbuchreihe. Vulkan-Verlag, EssenGoogle Scholar
  23. Breuer H, Altmann, H (2005) Überkritische Braunkohlekraftwerke. Brennstoff-Wärme-Kraft 57(6):47–51Google Scholar
  24. Brockel D, von der Kammer G, Rettemeier W, Weber H (1985) Große Naturumlaufdampferzeuger In: Jahrbuch der Dampferzeugertechnik, Bd. 1, 5th edn., pp 362–383. Vulkan Verlag, EssenGoogle Scholar
  25. Cao L, Kakaç S, Liu HT, Sarma PK (2000) The effects of thermal non-equilibrium and inlet temperature on two-phase flow pressure drop type instabilities in an upflow boiling system. Int J Thermal Sci 39:886–895CrossRefGoogle Scholar
  26. Cao L, Kakaç S, Liu HT, Sarma PK (2001) Theoretical analysis of pressure-drop type instabilities in an upflow boiling system with an exit restriction. Int J Heat Mass Transf 37:475–483CrossRefGoogle Scholar
  27. Carver MB (1969) Effect of by-pass characteristics on parallel-channel flow instabilities. In: Proceedings of the Institution of Mechanical Engineers, Vol 184, pp 84–92Google Scholar
  28. Chang ChJ, Lahey Jr. RT, Bonetto FJ, Drew DA, Embrechts MJ (1993) The analysis of chaotic instability in a boiling channel. In: Kim JH (ed) Instability in two-phase flow systems. The American Society of Mechanical Engineers, ASME, New Orleans Louisiana, pp 53–57Google Scholar
  29. Chang CJ, Lahey Jr. RT (1997) Analysis of chaotic instabilities in boiling systems. Nucl Eng Des 167:307–334CrossRefGoogle Scholar
  30. Chato JC (1963) Natural convection flows in parallel-channel systems. Trans ASME Ser. C J Heat Transf 85:339–345CrossRefGoogle Scholar
  31. Chen MM, Kasza, KE (1981) Thermal transient buoyancy-induced single-phase parallel channel flow instabilities. Trans Am Nucl Soc 38:773–774Google Scholar
  32. Chen,TK, Chen XZ, Chen XJ (1991) Boiling heat transfer and frictional pressure drop in internally ribbed tubes. In: Chen XJ, Veziroǧlu TN, Tien CL (eds) Multiphase flow and heat transfer: second int. symposium 1989, Vol 1. Taylor & Francis Inc., Sian, China, pp 621–629Google Scholar
  33. Chen Q, Scheffknecht G (2002) Boiler design and materials aspects for advanced power plants, 29. Sept.–2. Okt. 7th Liège Conf. Liège, BelgiumGoogle Scholar
  34. Chen Q, Scheffknecht G (2003) New boiler and piping materials: Design consideration for advanced cycle conditions. In: VGB Conf. “Power Plants in Competition”, Cologne, GermanyGoogle Scholar
  35. Chilton H (1957) A theoretical study of stability in water flow through heated passages. J Nucl Ener 5:273–284MATHGoogle Scholar
  36. Clausse A, Lahey Jr. RT, Podowski M (1989) An analysis of stability and oszillation modes in boiling multichannel loops using parameter pertuberation methods. Int J Heat Mass Transf 32(11):2055–2064MATHCrossRefGoogle Scholar
  37. Crowley CJ, Deane C, Gouse Jr. SW (1967) Two-phase flow oscillations in vertical, parallel heated channels. EURATOM Rep., Proc. Symp. on Two-Phase Flow Dynamics, EindhovenGoogle Scholar
  38. Daleas RS, Bergles EA (1965) Effect of upstream compressibility on subcooled critical heat flux. ASME Paper 65-HT-67Google Scholar
  39. Davis AL, Potter R (1967) An analysis of the causes of instable flow in parallel channel. Euratom symposium on two-phase flow dynamics, Vol. 1, EURATOM, pp 225–266Google Scholar
  40. Ding Y, Kakaç S, Chen XJ (1995) Dynamic instabilities of boiling two-phase flow in a single horizontal channel. Exp Thermal Fluid Sci 11:327–342CrossRefGoogle Scholar
  41. Dogan T, Kakaç S, Veziroglu TN (1983) Analysis of forced boiling flow instabilities in a single-channel upflow system. Int J Heat Fluid Flow 4:145–156CrossRefGoogle Scholar
  42. Doležal R (1990) Dampferzeugung: Verbrennung, Feuerung, Dampferzeuger. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  43. Duffey RB, Hughes ED, Rohatgi US (1993) Two-phase flow stability and dryout in parallel channels in natural circulation. AIChE Symp Ser 89(295):44–50Google Scholar
  44. Eck B (1988) Technische Strömungslehre, 9th edn., Bd. 1. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  45. Effertz PH, Forchhammer P, Heinz A (1978) Korrosion und Erosion in Speisewasservorwärmern – Ursachen und Verhütung. Der Maschinenschaden 51(4):154–161Google Scholar
  46. Epple B, Keil S, Scheffknecht G, Stamatelopoulos GN (2004) Neue Steinkohlekraftwerke mit hohen Wirkungsgraden. BWK 56(7/8):44–48Google Scholar
  47. Fleck JA Jr. (1960) The dynamic behavior of boiling water reactors. J Nucl Energy A 11:114–130Google Scholar
  48. Ford WD, Bankoff SG, Fauske HK (1971a) Slug ejection of Freon-113 from a vertical channel with nonuniform initial temperature profils. In: Int. symposium on two-phase systems. Paper-No. 7–11. Haifa, IsraelGoogle Scholar
  49. Ford WD, Fauske HK, Bankoff SG (1971b) The slug expulsion of Freon-113 by rapid depressurization of a vertical tube. Int J Heat Mass Transf 14:133–140CrossRefGoogle Scholar
  50. Fried E, Idelchik IE (1989) Flow resistance: a design guide for engineers. Hemisphere Publishing, New York, Washington, PhiladelphiaGoogle Scholar
  51. Fukuda K, Hasegawa S (1979a) Analysis on two-phase flow instability in parallel multichannels. J Nucl Sci Technol 16(3):190–199CrossRefGoogle Scholar
  52. Fukuda K, Kobori T (1979b) Classification of two-phase flow instability by density wave oscillation model. J Nucl Sci Technol 16(2):95–108CrossRefGoogle Scholar
  53. Furuya M, Manera A, van Bragt DB, van der Hagen THJJ, de Kruijf WJM (2002) Effect of liquid density differences on boiling two-phase flow stability. J Nucl Sci Technol 39(10):1094–1098CrossRefGoogle Scholar
  54. Gerliga VA, Dulevski RA (1970) The thermohydraulic stability of multichannel steam generating systems. Heat Transf Sov Res 2:63Google Scholar
  55. Gouse Jr. SW, Andrysiak CD (1963) Fluid oscillations in a closed looped with transparent, parallel, vertical, heated channels. MIT Engineering Projects Lab Report 8973-2, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  56. Griffith P (1962) Geysering in liquid-filled lines. ASME Paper 62-HT39Google Scholar
  57. Grolmes MA, Fauske HK (1970) Modelling of sodium expulsion with Freon-11. ASME Paper 70-HT-24Google Scholar
  58. Guanghui S, Dounan J, Fukuda K, Yujun G (2002) Theoretical and experimentel study on density wave oscillation of two-phase natural circulation of low equilibrium quality. Nucl Eng Des 215:187–198CrossRefGoogle Scholar
  59. Guo LJ, Feng ZP, Chen XJ (2001) Pressure drop oscillation of steam-water two-phase flow in a helically tube. Int J Heat Mass Transf 44:1555–1564CrossRefGoogle Scholar
  60. Guo LJ, Feng ZP, Chen XJ (2002) Transient convective heat transfer of steam-water two-phase flow in a helical tube under pressure drop type oscillations. Int J Heat Mass Transf 45:533–542CrossRefGoogle Scholar
  61. Hawtin P (1970) Chugging flow. AERE-R 6661Google Scholar
  62. Hein D, Kastner W, Köhler W (1982) Einfluss der Rohrlage auf den Wärmeübergang in einem Verdampferrohr. Brennstoff-Wärme-Kraft 34(11):489–493Google Scholar
  63. Heitmann HG, Kastner W (1982) Erosionskorrosion in Wasser-Dampfkreisläufen – Ursachen und Gegenmaßnahmen. VGB Kraftwerkstechnik 62(3):211–219Google Scholar
  64. Hellwig U (1988) Gleichmäßige Verteilung strömender Flüssigkeiten auf parallel geschaltete, beheizte Rohre. Brennstoff-Wärme-Kraft 40(7/8):277–282Google Scholar
  65. Huhn J, Wolf J (1975) Zweiphasenströmung gasförmig/flüssig. VEB Fachbuchverlag Leipzig, LeipzigGoogle Scholar
  66. Ishii M (1982) Wave phenomena and two-phase flow instabilities. In: Hetsroni G (ed) Handbook of multiphase systems, pp 2–95–2–122. Hemisphere Publ. Corp., Washington, New York, LondonGoogle Scholar
  67. Iwabuchi M, Matsuo T, Kanzaka M, Haneda H, Yamamoto K (1985) Prediction of heat transfer coefficient and pressure drop in rifled tubing at subcritical and supercritical pressure. In: Int symposium of heat transfer. Tsinghua University, Beijing, pp 1–8Google Scholar
  68. Jeglic FA, Grace TM (1965) Onset on flow oszillations in forced flow subcooled boiling. Technical Report, NASA-TN-D 2821Google Scholar
  69. Kakaç S, Veziroglu TN, Akyuzlu K, Berkol O (1974) Sustained and transient boiling flow instabilities in a cross-connected four-parallel-channel upflow system. In: Proceedings of the 5th int heat transfer conference, Vol 4, 3.–7. September. Tokyo, Japan, pp 235–239Google Scholar
  70. Kakaç S, Veziroglu TN, Padki MM, Fu LQ, Chen XL (1990) Investigation of thermal instabilities in a forced convective upward boiling system. Exp Thermal Fluid Sci 3(2):191–201CrossRefGoogle Scholar
  71. Kakaç S, Bon B (1990) A Review of two-phase flow dynamic instabilities in tube boiling systems. Int J Heat Mass Transf 51:399–433MATHCrossRefGoogle Scholar
  72. Kakaç S, Liu T (1991) Two-phase dynamic instabilities in boiling systems. In: Chen XJ, Veziroǧlu TN Tien CL (eds) Multiphase flow and heat transfer: second int. symposium 1989, Vol 1. Taylor & Francis Inc., Sian China, pp 403–444Google Scholar
  73. Karsli S, Yilmaz M, Comakli O (2002) The effect of internal surface modification on flow instabilities in forced convection boiling in a horizontal tube. Int J Heat Fluid Flow 23:776–791CrossRefGoogle Scholar
  74. Kastner W, Riedle K, Tratz H (1984) Experimentelle Untersuchungen zum Materialabtrag durch Erosionskorrosion. VGB Kraftwerkstechnik 64(5):452–465Google Scholar
  75. Kefer V (1989a) Strömungsformen und Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Dissertation, Technical University of MunichGoogle Scholar
  76. Keller H (1974) Erosionskorrosion an Nassdampfturbinen. VGB Kraftwerkstechnik 54(5):292–295Google Scholar
  77. Kelp F (1969) Über Erfahrungen mit Speisewasser-Hochdruckvorwärmern der Sammelbauweise. Mitteilungen der VGB 49(6):417–429Google Scholar
  78. Kern TU, Wieghardt K (2001) The application of hight-temperature 10cr materials in steam power plants. VGB PowerTech 81(5):125–131Google Scholar
  79. Kitto JB, Wiener M (1982) Effects on nonuniform circumferential heating and inclination on critical heat flux in smooth and ribbed bore tubes. In: Proceedings of the 7th int. heat transfer conference. München, Germany, pp 297–302Google Scholar
  80. Kjaer S, Klauke F, Vanstone R, Zeijseink A, Weissinger G, Kristensen G, Meier J, Blum R, Wieghardt K (2002) The advanced supercritical 7000C pulverised coal-fired power plant. VGB PowerTech 82(7):46–49Google Scholar
  81. Klefenz G (1991) Die Regelung von Dampfkraftwerken, 4th edn. BI-Wissenschaftsverlag, Mannheim Wien ZürichGoogle Scholar
  82. Köhler W, Kastner W (1986) Heat transfer and pressure loss in rifled tubes. In: Proceedings of the 8th heat transfer conference, Vol 5. San Franzisco, California, pp 2861–2865Google Scholar
  83. Köhne H (1969) Numerische Verfahren zur Berechnung instationärer Temperaturfelder unter Berücksichtigung der Temperaturabhängigkeit der Stoffgrößen. Die Wärme 75(4):130–136Google Scholar
  84. Kok DK (2009) Nuclear engineering handbook. Mechanical engineering series. CRC Press, Boca RatonCrossRefGoogle Scholar
  85. Köster C, Moser P, Bergmann H, Jacobs J (2001) Schritte auf dem Wege zu neuen Kohlekraftwerken: Das VGB-Verbundforschungsprogramm KOMET 650. VGB PowerTech 81(9):64–68Google Scholar
  86. Krasykova LY, Glusker BN (1965) Hydraulic study of three-pass panels with bottom inlet headers for once-through boilers. Teploenergetika, Nr. 8Google Scholar
  87. Kutateladze SS, Leont’ev AI (1966) Some applications of the asymptotic theory of the turbulent boundary layer. In: Proceedings of the 3rd int. heat transfer conference IIIGoogle Scholar
  88. Lahey RT, Clause A, DiMarco P (1989) Chaos and non-linear dynamics of density-wave instabilities in a boiling channel. AIChE Symp Ser 85(269):256–261Google Scholar
  89. Ledinegg M (1938) Unstabilität der Strömung bei natürlichem und Zwangumlauf. Die Wärme 61(48):891–898Google Scholar
  90. Lee SY, Ishii M (1990) Characteristics of two-phase natural circulation in freon-113 boiling loop. Nucl Eng Des 121(1):69–81CrossRefGoogle Scholar
  91. Lehmann H (1990) Handbuch der Dampferzeugerpraxis, 2nd edn. Resch-Verlag, MunichGoogle Scholar
  92. Lehne F (1995) Erstellung eines Programmes zur Überwachung hochbeanspruchter Dampferzeugerbauteile. Master thesis, Technical University of BraunschweigGoogle Scholar
  93. Leithner, R (1983a) Vergleich zwischen Zwangdurchlaufdampferzeuger, Zwangdurchlaufdampferzeuger mit Vollastumwälzung und Naturumlaufdampferzeuger. VGB Kraftwerkstechnik 63(7):553–568Google Scholar
  94. Leithner R, Steege F, Pich R, Erlmann K, Nguyen CT (1990) Vergleich verschiedener Verfahren zur Bestimmung der Temperaturdifferenz in dickwandigen Bauteilen für die Lebensdauerberechnung. VGB Kraftwerkstechnik 70(6):446–457Google Scholar
  95. Leithner, R (1991a) Thermohydraulic design of fossil-fuel-fired boiler components. In: Kakaç S (ed) Once-through boilers, 277–362. Wiley, New York, Cichester, BrisbaneGoogle Scholar
  96. Li Y, Yeoh GH, Tu JY (2004) Numerical investigation of static flow instability in a low-pressure subcooled boiling channel. Heat Mass Transf 40:355–364MATHCrossRefGoogle Scholar
  97. Lin S, Kwok CCK, Li RY, Chen ZH, Chen ZY (1991a) Pressure drop during vaporization of R-12 through capillary tubes. Int J Multiphase Flow 17(1):95–102MATHCrossRefGoogle Scholar
  98. Lin ZH (1991b) Thermohydraulic design of fossil-fuel-fired boiler components. In: Kakaç S (ed) Boilers, evaporators, and condensers, pp 363–470. Wiley, New York, Chichester, BrisbaneGoogle Scholar
  99. Linzer V (1970) Das Ausströmen von Siedewasser und Sattdampf aus Behältern. Brennstoff-Wärme-Kraft 22(10):470–476Google Scholar
  100. Linzer W, Walter H (2003) Flow reversal in natural circulation systems. Appl Thermal Eng 23(18):2363–2372CrossRefGoogle Scholar
  101. Liu HT, Koçak H, Kakaç S (1995) Dynamicl analysis of pressure-drop type oscillations with a planar model. Int J Multiphase Flow 21(5):851–859MATHCrossRefGoogle Scholar
  102. Loos C, Heitz E (1973) Zum Mechanismus der Erosionskorrosion in schnell strömenden Flüssigkeiten. Werkstoff und Korrosion 24(1):38–48CrossRefGoogle Scholar
  103. Mair R (1985) Ein Mehrstellen-Differenzenverfahren zur Lösung der Fouriergleichung in Polarkoordinaten. Die Wärme 91(5):57–60Google Scholar
  104. Martin H, Langner H, Franke J (1984) Strömungsoszillationen in Verdampfern und Abhilfemaßnahmen. Brennstoff -Wärme-Kraft 36(3):88–95Google Scholar
  105. Mathisen RP (1967) Out of pile channel instability in the loop Skälvan. In: Int. symposium on two-phase dynamics. Eindhoven, The NetherlandsGoogle Scholar
  106. Matsuo T, Iwabuchi M, Kanzaka M, Haneda H, Yamamoto K (1987) Heat transfer correlations of rifled tubing for boilers under sliding pressure operating condition. Heat Transf Jpn Res 16(5):1–14Google Scholar
  107. Mayinger F, Kastner W (1968) Berechnung von Instabilitäten in Zweiphasenströmungen. Chemie-Ingenieur-Technik 40(24):1185–1192CrossRefGoogle Scholar
  108. Mentes A, Kakaç S, Veziroglu TN, Zhang HY (1989) Effect of inlet subcooling on two-phase flow oscillations in a vertical boiling channel. Wärme- und Stoffübertragung 24:25–36CrossRefGoogle Scholar
  109. Meyer, H, Erdmann D, Moser P, Polenz S (2008) KOMET 650 - Kohlebefeuerte Kraftwerke mit Dampfparametern bis zu 650 tccelsius. VGB PowerTech 88(3):36–42Google Scholar
  110. Minzer U, Barnea D, Taitel Y (2006) Flow rate distribution in evaporating parallel pipes-modeling and experimental. Chem Eng Sci 61:7249–7259CrossRefGoogle Scholar
  111. Narayanan S, Srinivas B, Pushpavanam S, Murty BS (1997) Non-linear dynamics of a two-phase flow system in an evaporator: The effects of (i) a time varying pressure drop (ii) an axially varying heat flux. Nucl Eng Des 178:279–294CrossRefGoogle Scholar
  112. Nayak AK, Lathouwers D, Van der Hagen THJJ, Bos ANR, Schrauwen FJM (2003) A numerical study of boiling flow instability of a closed loop thermosyphon system. In: Hrsg. von A. A. Mohamad (ed) Proceedings of the 3rd int. conference on computational heat and mass transfer. Banff, Canada, pp 1–10Google Scholar
  113. Nayak AK, Vijayan PK, Saha D, Raj VV, Aritomi M (2000) Analytical study of nuclear-coupled density-wave instability in a natural circulation pressure tube type boiling water reactor. Nucl Eng Des 195:27–44CrossRefGoogle Scholar
  114. Nayak AK, Vijayan PK (2008) Flow instabilities in boiling two-phase natural circulation systems: a review. Sci Technol Nucl Install, 1–15Google Scholar
  115. Netz H, Wagner W (1994) Betriebshandbuch Wärme, 4th edn. Verlag Dr. Ingo Resch GmbH., GräfelfingGoogle Scholar
  116. Nishikawa K, Sekoguchi K, Nakasatomi M (1973) Two-phase flow in spirally grooved tubes. Bull JSME 16(102):1918–1927CrossRefGoogle Scholar
  117. Nishikawa K, Fujii T, Yoshida S, Ohno M (1974) Flow boiling crisis in grooved boiler-tubes. In: 5th int. heat transfer conference, Vol 4. Tokyo, Japan, pp 270–274Google Scholar
  118. Nowotny P (1982) Ein Beitrag zur Strömungsberechnung in Rohrnetzwerken. Progress report VDI 102, VDI Verlag, DüsseldorfGoogle Scholar
  119. Oka Y (2014) Nuclear reactor design. An advanced course in nuclear engineering. Springer Press, JapanGoogle Scholar
  120. Ozawa M, Akagawa K, Sakaguchi T (1979) Flow instabilities in parallel-channel flow systems of gas-liquid two-phase mixtures. Bull JSME 22(17):1113–1118CrossRefGoogle Scholar
  121. Ozawa M, Nakanishi S, Ishigai S, Mizuta Y, Taruili H (1984) Flow instabilities in boiling channels; part i, pressure drop oscillations. Int J Multiphase Flow 15(4):639–657CrossRefGoogle Scholar
  122. Ozawa M, Akagawa K, Sakaguchi T (1989) Flow instabilities in parallel-channel flow systems of gas-liquid two-phase mixtures. Int J Multiphase Flow 15(4):639–657CrossRefGoogle Scholar
  123. Padki MM, Liu HT, Kakaç S, Veziroglu TN, Chen XL (1991a) Experimental and theoretical investigations of two-phase flow pressure-drop type and thermal oscillations. In: Proceedings of the 2nd int. symposium on multi-phase and heat transfer. Xian, ChinaGoogle Scholar
  124. Padki MM, Liu HT, Kakaç S (1991b) Two-phase flow pressure-drop type and thermal oscillations. Int J Heat Fluid Flow 34(3):240–248CrossRefGoogle Scholar
  125. Padki MM, Palmer K, Kakaç S, Veziroglu TN (1992) Bifurcation analysis of pressure-drop oscillations and the Ledinegg instability. Int J Heat Mass Transf 35(2):525–532MATHCrossRefGoogle Scholar
  126. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publ. Corp., Washington, New York, LondonMATHGoogle Scholar
  127. Pich R (1983) Näherungsgleichungen zur Abschätzung der instationären Wärmespannungen in krümmungsbehinderten Platten, Hohlzylindern und Hohlkugeln bei linear veränderter Leittemperatur. VGB Kraftwerkstechnik 63(10):915–924Google Scholar
  128. Pich, R (1993) Allgemeine Betrachtungen über instationäre Wärmespannungen in krümmungsbehinderten Platten, Hohlzylindern und Hohlkugeln mit ebenen symmetrischen Temperaturfeldern. Dissertation, Vienna University of TechnologyGoogle Scholar
  129. Podowski M, Taleyarkhan RP, Lahey Jr. RT (1983) Channel-to-channel instabilities in parallel channel boiling system. Trans Am Nucl Soc 44:383–384Google Scholar
  130. Profos P (1947) Die Stabilität der Wasserverteilung in Zwanglauf-Heizflächen. Technische Rundschau Sulzer, Vol 1Google Scholar
  131. Profos P (1959) Die Stabilisierung der Durchflussverteilung in Zwanglaufheizflächen. Energie 11(6):241–247Google Scholar
  132. Rassoul N, Hamidouche T, Si-Ahmed EK, Bousbia-Salah A (2005) Simplified numerical model for predicting onset of flow instability in parallel heated channels. In: The 11th int. topical metting on nuclear reactor thermal-hydraulics (NURETH-11). Avignon, FranceGoogle Scholar
  133. Reinecke N (1996) Fluiddynamische Instabilitäten. Hochschulkurs “Mehrphasenströmungen in der Verfahrenstechnik”. University of Hannover, Germany, S 4–31Google Scholar
  134. Richter H (1962) Rohrhydraulik, 4th edn. Springer, Berlin, HeidelbergMATHCrossRefGoogle Scholar
  135. Ruspini, LC (2013) Experimental and numerical investigation on two-phase flow instabilities. Dissertation, Norwegian University of Science and Technology, TrondheimGoogle Scholar
  136. Satoh A, Okamoto K, Madarame H (2001) Unstable behaviour of single-phase natural circulation under closed loop with connecting tube. Exp Thermal Fluid Sci 25:429–435CrossRefGoogle Scholar
  137. Schmidt D (1967a) Instationäre Wärmespannungen in einer Frischdampfleitung. Energie 19(12):393–398Google Scholar
  138. Schmidt D (1973) Über die Berechnung instationärer Wärmespannungen. Rohre - Rohrleitungsbau - Rohrleitungstransport, Nr. 5/6:236–245Google Scholar
  139. Schröder HJ (1979) Betriebserfahrungen mit dampfberührten Anlagenteilen von Druckwasserreaktoren aus chemischer Sicht. VGB Kraftwerkstechnik 59(3):195–199Google Scholar
  140. Semedard JC, Scheffknecht G (1997) Moderne Abhitzekessel. VGB Kraftwerkstechnik 77(12):1028–1035Google Scholar
  141. Srinivas B, Pushpavanam S (2000) Determining parameters where pressure drop oscillations occur in a boiling channel using singularity theory and the d-partition method. Chem Eng Sci 55:3771–3783CrossRefGoogle Scholar
  142. Stamatelopoulos GN, Scheffknecht G, Sadlon ES (2003) Supercritical boilers and power plants: experience and perspectives. Power-Gen Europe 2003. Düsseldorf, Germany, 1–17Google Scholar
  143. Stamatelopoulos GN, Weissinger, G (2005) Die nächste Generation von Steinkohlekraftwerken. VGB Konferenz “Kraftwerke im Wettbewerb 2005: Ordnungspolitik, Markt und Umweltschutz”. Potsdam, Germany, S 49–53Google Scholar
  144. Stenning AH, Veziroglu, TN (1965) Flow oscillations modes in forced convection boiling. In: Proc. 1965 Heat Transfer and Fluid Mech. Inst., Stanfort Univ. Press, pp 301–316Google Scholar
  145. Stenning AH, Veziroglu TN, Callahan GM (1967) Pressure drop oscillations in forced convection flow with boiling. In: Proc. Symp. on Two-Phase Flow Dynamics. Eindhoven, pp 405–427Google Scholar
  146. Strauß K (1985) Kriterien für den Einsatz unterschiedlicher Dampferzeugersysteme bei Kraftwerks-Dampferzeugern. In: Jahrbuch der Dampferzeugertechnik, Vol 1, 5th edn., Vulkan Verlag, Essen, S 332–342Google Scholar
  147. Strauß K (1992) Kraftwerkstechnik: zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  148. Stribersky A, Linzer W (1984) Ein Beitrag zum Problem der Stabilität beim Naturumlauf. Progress report VDI 154, VDI Verlag, DüsseldorfGoogle Scholar
  149. Su G, Jia D, Fukuda K, Guo Y (2001) Theoretical study on density wave oszillation of two-phase natural circulation under low quality conditions. J Nucl Sci Technol 38(8):607–613CrossRefGoogle Scholar
  150. Swenson HS, Carver JR, Szoeke G (1962) The effects of nucleate boiling versus film boiling on heat transfer in power boiler tubes. Trans ASME Ser A J Heat Transf 84:365–371Google Scholar
  151. Takeda T, Kawamura H, Seki M (1987) Natural circulation in parallel vertical channel with different heat inputs. Nucl Eng Des 104:133–143CrossRefGoogle Scholar
  152. Takitani K, Takemura T (1978) Density wave instability in once-through boiling flow system, (I) experiment. J Nucl Sci Technol 15(5):355–364CrossRefGoogle Scholar
  153. Takitani K, Sakano K (1979) Density wave instability in once-through boiling flow system, (III) distributed parameter model. J Nucl Sci Technol 16(1):16–29CrossRefGoogle Scholar
  154. Taler J (1986) Dynamisches Verhalten dickwandiger Dampferzeugerbauteile. Brennstoff-Wärme-Kraft 38(1/2):20–25Google Scholar
  155. Taler J (1997) Überwachung von instationären Wärmespannungen in dickwandigen Bauteilen. Forschung im Ingenieurwesen 63:127–13CrossRefGoogle Scholar
  156. Taleyarkhan RP, Podowski MZ, Lahey Jr. RT (1981) Stability analysis of a nonuniformly heated boiling channel. Trans Am Nucl Soc 38:771–773Google Scholar
  157. Taleyarkhan RP, Podowski MZ, Lahey Jr. RT (1985) A instability analysis of ventilated channels. Trans ASME Ser C J Heat Transf 107:175–181CrossRefGoogle Scholar
  158. Thelen F (1981) Strömungsstabilität in Verdampfern von Zwangsdurchlaufdampferzeugern. VGB Kraftwerkstechnik 61(5):357–367Google Scholar
  159. Thomas HJ (1975) Thermische Kraftanlagen. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  160. Tippkötter Th, Schütz M, Scheffknecht G (2003) Start-up and operational experience with the 1000 MW ultra-supercritical boiler niederaussem in Germany. POWER-Gen Europe 2003. Düsseldorf, Germany, pp 1–21Google Scholar
  161. Todreas NE, Kazimi MS (2012) Nuclear systems volume I: Thermal hydraulic fundamentals, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  162. Tong LS, Currin HB, Larsen JPS, Smith OG (1966) Influence of axially non-uniform heat flux on DNB. AIChE Chem Eng Prog Symp Ser 62(64):35–40Google Scholar
  163. Tong LS (1968) Boundary–Layer analysis of the flow boiling crisis. Int J Heat Mass Transf 11:1208–1211CrossRefGoogle Scholar
  164. Tong LS, Tang YS (1997) Boiling heat transfer and two-phase flow, 2nd edn. Taylor & Francis, New YorkGoogle Scholar
  165. Truckenbrodt E (1983) Lehrbuch der angewandten Fluidmechanik. Springer, Berlin, Heidelberg, New York, TokyoCrossRefGoogle Scholar
  166. Uerlings R, Bruch U, Meyer H (2008) KOMET 650 - Untersuchungen des Betriebsverhaltens von Kesselwerkstoffen sowie deren Schweißverbindungen bei Temperaturen bis 650 tccelsius. VGB PowerTech 88(3):43–49Google Scholar
  167. Ünal HC (1982) The period of density-wave oscillations in forced convection steam generator tubes. Int J Heat Mass Transf 25(3):419–422CrossRefGoogle Scholar
  168. Veziroglu TN, Lee SS (1969) Boiling flow instabilities in parallel channels. In: Proceedings of the Institution of Mechanical Engineers, Vol 184, pp 7–17Google Scholar
  169. Veziroglu TN, Lee SS (1971) Boiling-flow instabilities in a cross-connected parallel channel upflow system. National Heat Transfer Conference, ASME Paper 71-HT-12, ASME. New YorkGoogle Scholar
  170. Wallis GG, Heasley JH (1961) Oscillations in two-phase flow systems. Trans ASME Ser C J Heat Transf 83:363–369CrossRefGoogle Scholar
  171. Walter H (2001) Modellbildung und numerische Simulation von Naturumlaufdampferzeugern. Progress report VDI 457, VDI Verlag, DüsseldorfGoogle Scholar
  172. Walter H, Linzer W (2002a) Einfluss der dynamischen Simulation auf die Geometrie der Überströmrohre eines Abhitzedampferzeugers. Modellierung und Simulation von Dampferzeugern und Feuerungen, VDI-Report Nr. 1664. VDI-Gesellschaft Energietechnik, Braunschweig, Germany: Verein Deutscher Ingenieure, 131–141Google Scholar
  173. Walter H, Weichselbraun A (2002b) Ein Vergleich unterschiedlicher Finite-Volumen-Verfahren zur dynamischen Simulation beheizter Rohrnetzwerke. Progress report VDI 477, VDI Verlag, DüsseldorfGoogle Scholar
  174. Walter H, Linzer W (2003a) Flow stability of natural circulation steam generators. In: Padet J, Arinc F (eds) Int. symposium on transient convective heat and mass transfer in single and two-phase flows. Int. Center for Heat and Mass Transfer, Begell House Inc., New York, pp 235–244Google Scholar
  175. Walter H, Linzer W (2004a) Flow stability of heat recovery steam generators. In: Proceedings of the ASME Turbo EXPO, Power for Land, Sea and Air 2004, 1–9Google Scholar
  176. Walter H, Linzer W (2004b) Investigations to the stability of a natural circulation two-pass boiler. In: Bergles AE, Golobic I, Amon ChH, Bejan A (eds) Proceedings of the ASME - ZSIS Int. thermal science seminar II, pp 469–474Google Scholar
  177. Walter H, Linzer W, Schmid Th (2005) Dynamic flow instability of natural circulation heat recovery steam generators. In: ISTP-16, Proceedings of the 16th int. symposium on transport phenomena. Pacific Center of Thermal-Fluids Engineering, pp 1–11Google Scholar
  178. Walter H, Linzer W (2005b) Influence of the boiler design on the flow stability of natural circulation heat recovery steam generators. Int. III Scientific and Technical Conference 2005, Energy from Gas, Vol. 2. Polityechnika Ślaska, Gliwice, Poland: UKiP s.c. J&D Gebka, pp 337–348Google Scholar
  179. Walter H, Linzer W (2005c) Numerical simulation of a three stage natural circulation heat recovery steam generator. IASME Trans 2(8):1343–1349Google Scholar
  180. Walter H (2006a) Ein Beitrag zur statischen und dynamischen Stabilität von Naturumlaufdampferzeugern. Progress report VDI 546, VDI Verlag, DüsseldorfGoogle Scholar
  181. Walter H, Linzer W (2006b) Flow reversal in a horizontal type natural circulation heat recovery steam generator. In: Proceedings of the ASME Turbo EXPO, Power for Land, Sea and Air 2006, pp 1–9Google Scholar
  182. Walter H, Linzer W (2006c) Flow stability of heat recovery steam generators. Trans ASME Ser D J Eng Gas Turbines Power 128:840–848CrossRefGoogle Scholar
  183. Walter H, Linzer W (2006d) Reverse flow in natural circulation systems with unequally heated tubes. WSEAS Trans Heat Mass Transf 1(1):3–10Google Scholar
  184. Walter H, Linzer W (2006e) Stability analysis of natural circulation systems. In: Long CA, Sohrab SH, Catrakis H, Fedorov AG, Sotiropoulos F, Benim AC, Wang G Pham T (eds) Proceedings of the 2006 IASME/WSEAS int. conference on HEAT and MASS TRANSFER. WSEAS, 18.-20. January, Miami, Florida, USA, pp 62–68Google Scholar
  185. Walter H, Linzer W (2006f) The influence of the operating pressure on the stability of natural circulation systems. Appl Thermal Eng 26(8–9):892–897CrossRefGoogle Scholar
  186. Walter H (2007a) Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms – A comparison of four algorithms. Simul Model Pract Theory 15:565–588CrossRefGoogle Scholar
  187. Walter H (2007b) Numerical analysis of density wave oszillations in the horizontal parallel tube paths of the evaporator of a natural circulation heat rocovery steam generator. In: Sorab SH, Catrakis HJ, Kobasko N, Necasova S (eds) Proceedings of the 5th IASME/WSEAS int. conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE07). WSEAS, Vouliagmeni, Athens, Greece, pp 172–179Google Scholar
  188. Wang Q, Chen XJ, Kakaç S, Ding Y (1994) An experimental investigation of density-wave-type oscillation in a convective boiling upflow system. Int J Heat Fluid Flow 15(3):241–246CrossRefGoogle Scholar
  189. Watson GB, Lee RA, Wiener M (1974) Critical heat flux in inclined and vertical smooth and ribbed tubes. In: Proceedings of the 5th int. heat transfer conference, Vol 4. Tokyo, Japan, pp 275–279Google Scholar
  190. Wedekind GL (1971) An experimental investigation into the oscillatory motion of the mixture-vapor transition point in horizontal evaporating flow. J Heat Transf 93:47–54CrossRefGoogle Scholar
  191. Weissinger G, Dutt S (2004) Supercritical steam generators - a technology for high efficiency and flexible operation mode. POWER India 2004. Mumbai, India, pp 1–21Google Scholar
  192. Weston MSt (2007) Nuclear reactor physics, 2nd edn. WILEY-VCH Press GmbH. & Co., WeinheimGoogle Scholar
  193. Wörrlein K (1975) Instabilitäten bei der Durchflussverteilung in beheizten Rohrsträngen von Dampferzeugern. VGB Kraftwerkstechnik 55(8):513–518Google Scholar
  194. Xu RD, Zhang YL, Zhu C (1984) The effects of using 4-ribbed tube on improving heat transfer in boiler water wall tubes. In: Chen HCh, Veziroǧlu TN (eds) Two-phase flow and heat transfer: China - U.S. progress. Hemisphere Pub. Corp., Sian, China, pp 317–325Google Scholar
  195. Yadigaroglu G, Bergles AE (1969) An experimental and theoretical study of density-wave oscillation in two-phase flow. MIT Report DSR 74629-3, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  196. Yadigaroglu G, Bergles AE (1972) Fundamental and higher-mode density-wave oscillations in two-phase flow. Trans ASME Ser C J Heat Transf 94:189–195CrossRefGoogle Scholar
  197. Yadigaroglu G (1981) Two-phase flow instabilities and propagation phenomena. In: Delhaye JM, Giot M, Riethmuller ML (eds) Thermohydraulics of two-phase systems for industrial design and nuclear engineering. McGraw Hill Book Company, St. Louis, New York, San Francisco, pp 353–403Google Scholar
  198. Yun G, Su GH, Wang JQ, Tian WX, Qiu SZ, Jia DN, Zhang JW (2005) Two-phase instability analysis in natural circulation loops of China advanced research reactor. Ann Nucl Energy 32:379–397CrossRefGoogle Scholar
  199. Zheng Q (1991a) Reibungsdruckverlust von Gas/Flüssigkeitsströmungen in glatten und innenberippten Rohren. Dissertation, Technical University of Erlangen-NürnbergGoogle Scholar
  200. Zheng Q, Köhler W, Kastner W, Riedle K (1991b) Druckverlust in glatten und innenberippten Verdampferrohren. Wärme- und Stoffübertragung 26:323–330CrossRefGoogle Scholar
  201. Ziegler A (1983) Lehrbuch der Reaktortechnik: Volume 1 Reaktortheorie. Springer, Berlin, Heidelberg, New York, TokyoCrossRefGoogle Scholar
  202. Ziegler A (1984) Lehrbuch der Reaktortechnik: Volume 2 Reaktortechnik. Springer, Berlin, Heidelberg, New York, TokyoCrossRefGoogle Scholar
  203. Ziegler A (1985) Lehrbuch der Reaktortechnik: Volume 3 Kernkraftwerkstechnik. Springer, Berlin, Heidelberg, New York, TokyoCrossRefGoogle Scholar
  204. Zindler H, Walter H, Hauschke A, Leithner R (2008) Dynamic simulation of a 800 MWel hard coal one-through supercritical power plant to fulfill the Great Britain grid code. In: Proceedings of the 6th IASME/WSEAS int. conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE08). WSEAS Press, WSEAS, Rhodes Island, GreeceGoogle Scholar
  205. Zoebl H, Kruschik J (1982) Strömung durch Rohre und Ventile, 2nd edn. Springer, Wien, New YorkCrossRefGoogle Scholar
  206. Zvirin Y, Jeuck III. PR, Sullivan CW, Duffey RB (1981) Experimental and analytical investigation of a natural circulation system with parallel loops. Trans ASME Ser C J Heat Transf 103:645–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Institute for Energy Systems and ThermodynamicsVienna University of TechnologyViennaAustria
  2. 2.Department of Energy Systems and TechnologyTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations