Skip to main content

Boiler Simulation—Simulating the Water and Steam Flow

  • Chapter
  • First Online:
Numerical Simulation of Power Plants and Firing Systems
  • 941 Accesses

Abstract

In boiler construction—depending on the fuel used—we distinguish between “conventional” systems (those that use fossil fuels like oil, gas, or coal) and nuclear plants in which nuclear fuels such as235U are used. The following summary of boiler systems, however, only addresses fossil fuel-fired plants. A brief overview on the main features of reactor theory and nuclear fission, as well as on the construction of nuclear reactors is given in Thomas (1975), Ziegler (1983), Ziegler (1984), Ziegler (1985), Strauß (1992), Weston (2007), Kok (2009), Todreas and Kazimi (2012), or Oka (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technical Regulations for Steam Boilers. Published on behalf of the German Steam Boiler Committee of the Association of Technical Supervisory Societies (TÜV) Essen, Carl Heymann Verlag KG, Cologne.

  2. 2.

    The Courant-Friedrichs-Lewy condition is a necessary condition for numerical stability. Here the numerical range of dependence must encompass the analytical domain of dependence, in order to safeguard the convergence of the numerical solution u i n against the analytical solution u(x i , τ n).

  3. 3.

    In the rate of change terms of the energy balance, the internal energy of the water or the steam was replaced with the corresponding spec. enthalpies.

  4. 4.

    When a subcooled liquid enters a constantly heated flow channel and is partially evaporated, the static pressure in that channel will decrease as the mass flow density increases. This relationship between pressure drop and mass flow density exists within a specific range for the mass flow density when the subcooling of the incoming liquid exceeds a certain critical value (Huhn and Wolf 1975).

  5. 5.

    The Ledinegg instability occurs predominantly in low pressure systems.

  6. 6.

    It should be noted at this point that the graphical method does not allow conclusions to be made as to whether any solution found is stable or unstable. Other methods of testing must be used, such as the numerical system analysis (which can only find stable solutions).

  7. 7.

    A stable water circulation describes a flow direction of the working fluid from the lower header to the drum in all water tubes.

  8. 8.

    Compound dynamic boiling water reactor instability (BWR instability) is not included in this overview, since it does not apply to plants fired with fossil fuels.

References

  • Achard JL, Drew DA, Lahey Jr. RT (1985) The analysis of nonlinear density-wave oscillations in boiling channel. J Fluid Mech 155:213–232

    Article  MathSciNet  MATH  Google Scholar 

  • Albrecht W (1966) Instationäre Wärmespannungen in Hohlzylinder. Konstruktion 18(6):224–231

    Google Scholar 

  • Albrecht W (1969) Beispiele für instationäre Temperaturverteilungen in Apparatebauteilen. Chemie Ingenieur Technik 41:676–681

    Article  Google Scholar 

  • Anderson RP, Bryant LT, Carter JC, Marchaterre JF (1962) Transient analysis of two-phase natural circulation systems. Argonne National Laboratory USAEC Report ANL-6653, Argonne National Laboratory

    Google Scholar 

  • Aritomi M, Aoki S, Inoue A (1977) Instabilities in parallel channel of forced-convection boiling upflow system, (II) experimental results. J Nucl Sci Tech 14(2):88–96

    Article  Google Scholar 

  • Aritomi M, Aoki Sh, Inoue A (1979) Instabilities in parallel channel of forced-convection boiling upflow system, (III) system with different flow conditions between two channels. J Nucl Sci Tech 16(5):343–355

    Article  Google Scholar 

  • Aritomi M, Aoki Sh, Narabayashi T (1981) Instabilities in parallel channel of forced-convection boiling upflow system, (IV) instabilities in multi-channel system and with boiling in downcomer. J Nucl Sci Tech 18(5):329–340

    Article  Google Scholar 

  • Aritomi M, Aoki Sh, Inoue A (1983) Instabilities in parallel channel of forced-convection boiling upflow system, (V) consideration of density wave instability. J Nucl Sci Tech 20(4):286–301

    Article  Google Scholar 

  • Aritomi M, Aoki Sh, Inoue A (1986a) Thermo-hydraulic instabilities in parallel boiling channel systems, Part 1: a non-linear and a linear analytic model. Nucl Eng Des 95:105–116

    Article  Google Scholar 

  • Aritomi M, Aoki Sh, Inoue A (1986b) Thermo-hydraulic instabilities in parallel boiling channel systems, Part 2: experimental results. Nucl Eng Des 95:117–127

    Article  Google Scholar 

  • Aritomi M, Chiang JH, Nakahashi T, Wataru M, Mori M (1992a) Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors, (I) thermo-hydraulic instabilities. J Nucl Sci Tech 29(7):631–641

    Article  Google Scholar 

  • Aritomi M, Chiang JH, Mori M (1992b) Fundamental studies of safty-related thermo-hydraulics of natural circulation boiling parallel channel flow systems under startup conditions (mechanism of geysering in parallel channels). Nucl Saf 33(2):170–182

    Google Scholar 

  • Aritomi M, Chiang JH, Mori M (1992c) Geysering in parallel boiling channels. J. Nucl Eng Des 141:111–121

    Article  Google Scholar 

  • Baars A (2003) Stationäre und instationäre Betriebsbedingungen eines Naturumlaufverdampfers. Progress report VDI 779, VDI Verlag, Düsseldorf

    Google Scholar 

  • Bauer F, Stamatelopoulos GN, Vortemeyer N, Bugge J (2003) Driving coal-fired power plants to over 50% efficiency. VGB PowerTech 83(12):97–100

    Google Scholar 

  • Bergles AE, Goldberg P, Maulbetsch JP (1967) Acoustic oszillations in high pressure single channel boiling systems. In: Euratom symposium on two-phase flow dynamics, Vol 1. EURATOM, pp 525–550

    Google Scholar 

  • Bergles AE (1976) Review of instabilities in two-phase systems. In: Kakaç S, Mayinger F (eds) Two-phase flows and heat transfer, Vol 1. Hemisphere Pub., Washington

    Google Scholar 

  • Berndt G (1984) Mathematisches Modell eines Naturumlauf-Dampferzeugers zur Störfallsimulation und dessen experimentelle Überprüfung. Dissertation, Technical University of Stuttgart

    Google Scholar 

  • Bishop AA, Sandberg RO, Tong LS (1964) Forced convection heat transfer to water at near-critical temperature and subcritical pressures. Argonne National Laboratory, USAEC Report WCAP-2056, Part IIIB

    Google Scholar 

  • Bohnsack G (1971) Das Verhalten des Eisen-II-hydroxides bei höheren Temperaturen. Mitteilung der VGB 51(4):328–338

    Google Scholar 

  • Bouré JA, Bergles AE, Tong LS (1973) Review of two-phase flow instability. Nucl Eng Des 25:165–192

    Article  Google Scholar 

  • Brandt F (1999b) Dampferzeuger: Kesselsysteme, Energiebilanz, Strömungstechnik, 2nd edn. Vol. 3 of FDBR – Fachbuchreihe. Vulkan-Verlag, Essen

    Google Scholar 

  • Breuer H, Altmann, H (2005) Überkritische Braunkohlekraftwerke. Brennstoff-Wärme-Kraft 57(6):47–51

    Google Scholar 

  • Brockel D, von der Kammer G, Rettemeier W, Weber H (1985) Große Naturumlaufdampferzeuger In: Jahrbuch der Dampferzeugertechnik, Bd. 1, 5th edn., pp 362–383. Vulkan Verlag, Essen

    Google Scholar 

  • Cao L, Kakaç S, Liu HT, Sarma PK (2000) The effects of thermal non-equilibrium and inlet temperature on two-phase flow pressure drop type instabilities in an upflow boiling system. Int J Thermal Sci 39:886–895

    Article  Google Scholar 

  • Cao L, Kakaç S, Liu HT, Sarma PK (2001) Theoretical analysis of pressure-drop type instabilities in an upflow boiling system with an exit restriction. Int J Heat Mass Transf 37:475–483

    Article  Google Scholar 

  • Carver MB (1969) Effect of by-pass characteristics on parallel-channel flow instabilities. In: Proceedings of the Institution of Mechanical Engineers, Vol 184, pp 84–92

    Google Scholar 

  • Chang ChJ, Lahey Jr. RT, Bonetto FJ, Drew DA, Embrechts MJ (1993) The analysis of chaotic instability in a boiling channel. In: Kim JH (ed) Instability in two-phase flow systems. The American Society of Mechanical Engineers, ASME, New Orleans Louisiana, pp 53–57

    Google Scholar 

  • Chang CJ, Lahey Jr. RT (1997) Analysis of chaotic instabilities in boiling systems. Nucl Eng Des 167:307–334

    Article  Google Scholar 

  • Chato JC (1963) Natural convection flows in parallel-channel systems. Trans ASME Ser. C J Heat Transf 85:339–345

    Article  Google Scholar 

  • Chen MM, Kasza, KE (1981) Thermal transient buoyancy-induced single-phase parallel channel flow instabilities. Trans Am Nucl Soc 38:773–774

    Google Scholar 

  • Chen,TK, Chen XZ, Chen XJ (1991) Boiling heat transfer and frictional pressure drop in internally ribbed tubes. In: Chen XJ, Veziroǧlu TN, Tien CL (eds) Multiphase flow and heat transfer: second int. symposium 1989, Vol 1. Taylor & Francis Inc., Sian, China, pp 621–629

    Google Scholar 

  • Chen Q, Scheffknecht G (2002) Boiler design and materials aspects for advanced power plants, 29. Sept.–2. Okt. 7th Liège Conf. Liège, Belgium

    Google Scholar 

  • Chen Q, Scheffknecht G (2003) New boiler and piping materials: Design consideration for advanced cycle conditions. In: VGB Conf. “Power Plants in Competition”, Cologne, Germany

    Google Scholar 

  • Chilton H (1957) A theoretical study of stability in water flow through heated passages. J Nucl Ener 5:273–284

    MATH  Google Scholar 

  • Clausse A, Lahey Jr. RT, Podowski M (1989) An analysis of stability and oszillation modes in boiling multichannel loops using parameter pertuberation methods. Int J Heat Mass Transf 32(11):2055–2064

    Article  MATH  Google Scholar 

  • Crowley CJ, Deane C, Gouse Jr. SW (1967) Two-phase flow oscillations in vertical, parallel heated channels. EURATOM Rep., Proc. Symp. on Two-Phase Flow Dynamics, Eindhoven

    Google Scholar 

  • Daleas RS, Bergles EA (1965) Effect of upstream compressibility on subcooled critical heat flux. ASME Paper 65-HT-67

    Google Scholar 

  • Davis AL, Potter R (1967) An analysis of the causes of instable flow in parallel channel. Euratom symposium on two-phase flow dynamics, Vol. 1, EURATOM, pp 225–266

    Google Scholar 

  • Ding Y, Kakaç S, Chen XJ (1995) Dynamic instabilities of boiling two-phase flow in a single horizontal channel. Exp Thermal Fluid Sci 11:327–342

    Article  Google Scholar 

  • Dogan T, Kakaç S, Veziroglu TN (1983) Analysis of forced boiling flow instabilities in a single-channel upflow system. Int J Heat Fluid Flow 4:145–156

    Article  Google Scholar 

  • Doležal R (1990) Dampferzeugung: Verbrennung, Feuerung, Dampferzeuger. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Duffey RB, Hughes ED, Rohatgi US (1993) Two-phase flow stability and dryout in parallel channels in natural circulation. AIChE Symp Ser 89(295):44–50

    Google Scholar 

  • Eck B (1988) Technische Strömungslehre, 9th edn., Bd. 1. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Effertz PH, Forchhammer P, Heinz A (1978) Korrosion und Erosion in Speisewasservorwärmern – Ursachen und Verhütung. Der Maschinenschaden 51(4):154–161

    Google Scholar 

  • Epple B, Keil S, Scheffknecht G, Stamatelopoulos GN (2004) Neue Steinkohlekraftwerke mit hohen Wirkungsgraden. BWK 56(7/8):44–48

    Google Scholar 

  • Fleck JA Jr. (1960) The dynamic behavior of boiling water reactors. J Nucl Energy A 11:114–130

    Google Scholar 

  • Ford WD, Bankoff SG, Fauske HK (1971a) Slug ejection of Freon-113 from a vertical channel with nonuniform initial temperature profils. In: Int. symposium on two-phase systems. Paper-No. 7–11. Haifa, Israel

    Google Scholar 

  • Ford WD, Fauske HK, Bankoff SG (1971b) The slug expulsion of Freon-113 by rapid depressurization of a vertical tube. Int J Heat Mass Transf 14:133–140

    Article  Google Scholar 

  • Fried E, Idelchik IE (1989) Flow resistance: a design guide for engineers. Hemisphere Publishing, New York, Washington, Philadelphia

    Google Scholar 

  • Fukuda K, Hasegawa S (1979a) Analysis on two-phase flow instability in parallel multichannels. J Nucl Sci Technol 16(3):190–199

    Article  Google Scholar 

  • Fukuda K, Kobori T (1979b) Classification of two-phase flow instability by density wave oscillation model. J Nucl Sci Technol 16(2):95–108

    Article  Google Scholar 

  • Furuya M, Manera A, van Bragt DB, van der Hagen THJJ, de Kruijf WJM (2002) Effect of liquid density differences on boiling two-phase flow stability. J Nucl Sci Technol 39(10):1094–1098

    Article  Google Scholar 

  • Gerliga VA, Dulevski RA (1970) The thermohydraulic stability of multichannel steam generating systems. Heat Transf Sov Res 2:63

    Google Scholar 

  • Gouse Jr. SW, Andrysiak CD (1963) Fluid oscillations in a closed looped with transparent, parallel, vertical, heated channels. MIT Engineering Projects Lab Report 8973-2, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Griffith P (1962) Geysering in liquid-filled lines. ASME Paper 62-HT39

    Google Scholar 

  • Grolmes MA, Fauske HK (1970) Modelling of sodium expulsion with Freon-11. ASME Paper 70-HT-24

    Google Scholar 

  • Guanghui S, Dounan J, Fukuda K, Yujun G (2002) Theoretical and experimentel study on density wave oscillation of two-phase natural circulation of low equilibrium quality. Nucl Eng Des 215:187–198

    Article  Google Scholar 

  • Guo LJ, Feng ZP, Chen XJ (2001) Pressure drop oscillation of steam-water two-phase flow in a helically tube. Int J Heat Mass Transf 44:1555–1564

    Article  Google Scholar 

  • Guo LJ, Feng ZP, Chen XJ (2002) Transient convective heat transfer of steam-water two-phase flow in a helical tube under pressure drop type oscillations. Int J Heat Mass Transf 45:533–542

    Article  Google Scholar 

  • Hawtin P (1970) Chugging flow. AERE-R 6661

    Google Scholar 

  • Hein D, Kastner W, Köhler W (1982) Einfluss der Rohrlage auf den Wärmeübergang in einem Verdampferrohr. Brennstoff-Wärme-Kraft 34(11):489–493

    Google Scholar 

  • Heitmann HG, Kastner W (1982) Erosionskorrosion in Wasser-Dampfkreisläufen – Ursachen und Gegenmaßnahmen. VGB Kraftwerkstechnik 62(3):211–219

    Google Scholar 

  • Hellwig U (1988) Gleichmäßige Verteilung strömender Flüssigkeiten auf parallel geschaltete, beheizte Rohre. Brennstoff-Wärme-Kraft 40(7/8):277–282

    Google Scholar 

  • Huhn J, Wolf J (1975) Zweiphasenströmung gasförmig/flüssig. VEB Fachbuchverlag Leipzig, Leipzig

    Google Scholar 

  • Ishii M (1982) Wave phenomena and two-phase flow instabilities. In: Hetsroni G (ed) Handbook of multiphase systems, pp 2–95–2–122. Hemisphere Publ. Corp., Washington, New York, London

    Google Scholar 

  • Iwabuchi M, Matsuo T, Kanzaka M, Haneda H, Yamamoto K (1985) Prediction of heat transfer coefficient and pressure drop in rifled tubing at subcritical and supercritical pressure. In: Int symposium of heat transfer. Tsinghua University, Beijing, pp 1–8

    Google Scholar 

  • Jeglic FA, Grace TM (1965) Onset on flow oszillations in forced flow subcooled boiling. Technical Report, NASA-TN-D 2821

    Google Scholar 

  • Kakaç S, Veziroglu TN, Akyuzlu K, Berkol O (1974) Sustained and transient boiling flow instabilities in a cross-connected four-parallel-channel upflow system. In: Proceedings of the 5th int heat transfer conference, Vol 4, 3.–7. September. Tokyo, Japan, pp 235–239

    Google Scholar 

  • Kakaç S, Veziroglu TN, Padki MM, Fu LQ, Chen XL (1990) Investigation of thermal instabilities in a forced convective upward boiling system. Exp Thermal Fluid Sci 3(2):191–201

    Article  Google Scholar 

  • Kakaç S, Bon B (1990) A Review of two-phase flow dynamic instabilities in tube boiling systems. Int J Heat Mass Transf 51:399–433

    Article  MATH  Google Scholar 

  • Kakaç S, Liu T (1991) Two-phase dynamic instabilities in boiling systems. In: Chen XJ, Veziroǧlu TN Tien CL (eds) Multiphase flow and heat transfer: second int. symposium 1989, Vol 1. Taylor & Francis Inc., Sian China, pp 403–444

    Google Scholar 

  • Karsli S, Yilmaz M, Comakli O (2002) The effect of internal surface modification on flow instabilities in forced convection boiling in a horizontal tube. Int J Heat Fluid Flow 23:776–791

    Article  Google Scholar 

  • Kastner W, Riedle K, Tratz H (1984) Experimentelle Untersuchungen zum Materialabtrag durch Erosionskorrosion. VGB Kraftwerkstechnik 64(5):452–465

    Google Scholar 

  • Kefer V (1989a) Strömungsformen und Wärmeübergang in Verdampferrohren unterschiedlicher Neigung. Dissertation, Technical University of Munich

    Google Scholar 

  • Keller H (1974) Erosionskorrosion an Nassdampfturbinen. VGB Kraftwerkstechnik 54(5):292–295

    Google Scholar 

  • Kelp F (1969) Über Erfahrungen mit Speisewasser-Hochdruckvorwärmern der Sammelbauweise. Mitteilungen der VGB 49(6):417–429

    Google Scholar 

  • Kern TU, Wieghardt K (2001) The application of hight-temperature 10cr materials in steam power plants. VGB PowerTech 81(5):125–131

    Google Scholar 

  • Kitto JB, Wiener M (1982) Effects on nonuniform circumferential heating and inclination on critical heat flux in smooth and ribbed bore tubes. In: Proceedings of the 7th int. heat transfer conference. München, Germany, pp 297–302

    Google Scholar 

  • Kjaer S, Klauke F, Vanstone R, Zeijseink A, Weissinger G, Kristensen G, Meier J, Blum R, Wieghardt K (2002) The advanced supercritical 7000C pulverised coal-fired power plant. VGB PowerTech 82(7):46–49

    Google Scholar 

  • Klefenz G (1991) Die Regelung von Dampfkraftwerken, 4th edn. BI-Wissenschaftsverlag, Mannheim Wien Zürich

    Google Scholar 

  • Köhler W, Kastner W (1986) Heat transfer and pressure loss in rifled tubes. In: Proceedings of the 8th heat transfer conference, Vol 5. San Franzisco, California, pp 2861–2865

    Google Scholar 

  • Köhne H (1969) Numerische Verfahren zur Berechnung instationärer Temperaturfelder unter Berücksichtigung der Temperaturabhängigkeit der Stoffgrößen. Die Wärme 75(4):130–136

    Google Scholar 

  • Kok DK (2009) Nuclear engineering handbook. Mechanical engineering series. CRC Press, Boca Raton

    Book  Google Scholar 

  • Köster C, Moser P, Bergmann H, Jacobs J (2001) Schritte auf dem Wege zu neuen Kohlekraftwerken: Das VGB-Verbundforschungsprogramm KOMET 650. VGB PowerTech 81(9):64–68

    Google Scholar 

  • Krasykova LY, Glusker BN (1965) Hydraulic study of three-pass panels with bottom inlet headers for once-through boilers. Teploenergetika, Nr. 8

    Google Scholar 

  • Kutateladze SS, Leont’ev AI (1966) Some applications of the asymptotic theory of the turbulent boundary layer. In: Proceedings of the 3rd int. heat transfer conference III

    Google Scholar 

  • Lahey RT, Clause A, DiMarco P (1989) Chaos and non-linear dynamics of density-wave instabilities in a boiling channel. AIChE Symp Ser 85(269):256–261

    Google Scholar 

  • Ledinegg M (1938) Unstabilität der Strömung bei natürlichem und Zwangumlauf. Die Wärme 61(48):891–898

    Google Scholar 

  • Lee SY, Ishii M (1990) Characteristics of two-phase natural circulation in freon-113 boiling loop. Nucl Eng Des 121(1):69–81

    Article  Google Scholar 

  • Lehmann H (1990) Handbuch der Dampferzeugerpraxis, 2nd edn. Resch-Verlag, Munich

    Google Scholar 

  • Lehne F (1995) Erstellung eines Programmes zur Überwachung hochbeanspruchter Dampferzeugerbauteile. Master thesis, Technical University of Braunschweig

    Google Scholar 

  • Leithner, R (1983a) Vergleich zwischen Zwangdurchlaufdampferzeuger, Zwangdurchlaufdampferzeuger mit Vollastumwälzung und Naturumlaufdampferzeuger. VGB Kraftwerkstechnik 63(7):553–568

    Google Scholar 

  • Leithner R, Steege F, Pich R, Erlmann K, Nguyen CT (1990) Vergleich verschiedener Verfahren zur Bestimmung der Temperaturdifferenz in dickwandigen Bauteilen für die Lebensdauerberechnung. VGB Kraftwerkstechnik 70(6):446–457

    Google Scholar 

  • Leithner, R (1991a) Thermohydraulic design of fossil-fuel-fired boiler components. In: Kakaç S (ed) Once-through boilers, 277–362. Wiley, New York, Cichester, Brisbane

    Google Scholar 

  • Li Y, Yeoh GH, Tu JY (2004) Numerical investigation of static flow instability in a low-pressure subcooled boiling channel. Heat Mass Transf 40:355–364

    Article  MATH  Google Scholar 

  • Lin S, Kwok CCK, Li RY, Chen ZH, Chen ZY (1991a) Pressure drop during vaporization of R-12 through capillary tubes. Int J Multiphase Flow 17(1):95–102

    Article  MATH  Google Scholar 

  • Lin ZH (1991b) Thermohydraulic design of fossil-fuel-fired boiler components. In: Kakaç S (ed) Boilers, evaporators, and condensers, pp 363–470. Wiley, New York, Chichester, Brisbane

    Google Scholar 

  • Linzer V (1970) Das Ausströmen von Siedewasser und Sattdampf aus Behältern. Brennstoff-Wärme-Kraft 22(10):470–476

    Google Scholar 

  • Linzer W, Walter H (2003) Flow reversal in natural circulation systems. Appl Thermal Eng 23(18):2363–2372

    Article  Google Scholar 

  • Liu HT, Koçak H, Kakaç S (1995) Dynamicl analysis of pressure-drop type oscillations with a planar model. Int J Multiphase Flow 21(5):851–859

    Article  MATH  Google Scholar 

  • Loos C, Heitz E (1973) Zum Mechanismus der Erosionskorrosion in schnell strömenden Flüssigkeiten. Werkstoff und Korrosion 24(1):38–48

    Article  Google Scholar 

  • Mair R (1985) Ein Mehrstellen-Differenzenverfahren zur Lösung der Fouriergleichung in Polarkoordinaten. Die Wärme 91(5):57–60

    Google Scholar 

  • Martin H, Langner H, Franke J (1984) Strömungsoszillationen in Verdampfern und Abhilfemaßnahmen. Brennstoff -Wärme-Kraft 36(3):88–95

    Google Scholar 

  • Mathisen RP (1967) Out of pile channel instability in the loop Skälvan. In: Int. symposium on two-phase dynamics. Eindhoven, The Netherlands

    Google Scholar 

  • Matsuo T, Iwabuchi M, Kanzaka M, Haneda H, Yamamoto K (1987) Heat transfer correlations of rifled tubing for boilers under sliding pressure operating condition. Heat Transf Jpn Res 16(5):1–14

    Google Scholar 

  • Mayinger F, Kastner W (1968) Berechnung von Instabilitäten in Zweiphasenströmungen. Chemie-Ingenieur-Technik 40(24):1185–1192

    Article  Google Scholar 

  • Mentes A, Kakaç S, Veziroglu TN, Zhang HY (1989) Effect of inlet subcooling on two-phase flow oscillations in a vertical boiling channel. Wärme- und Stoffübertragung 24:25–36

    Article  Google Scholar 

  • Meyer, H, Erdmann D, Moser P, Polenz S (2008) KOMET 650 - Kohlebefeuerte Kraftwerke mit Dampfparametern bis zu 650 tccelsius. VGB PowerTech 88(3):36–42

    Google Scholar 

  • Minzer U, Barnea D, Taitel Y (2006) Flow rate distribution in evaporating parallel pipes-modeling and experimental. Chem Eng Sci 61:7249–7259

    Article  Google Scholar 

  • Narayanan S, Srinivas B, Pushpavanam S, Murty BS (1997) Non-linear dynamics of a two-phase flow system in an evaporator: The effects of (i) a time varying pressure drop (ii) an axially varying heat flux. Nucl Eng Des 178:279–294

    Article  Google Scholar 

  • Nayak AK, Lathouwers D, Van der Hagen THJJ, Bos ANR, Schrauwen FJM (2003) A numerical study of boiling flow instability of a closed loop thermosyphon system. In: Hrsg. von A. A. Mohamad (ed) Proceedings of the 3rd int. conference on computational heat and mass transfer. Banff, Canada, pp 1–10

    Google Scholar 

  • Nayak AK, Vijayan PK, Saha D, Raj VV, Aritomi M (2000) Analytical study of nuclear-coupled density-wave instability in a natural circulation pressure tube type boiling water reactor. Nucl Eng Des 195:27–44

    Article  Google Scholar 

  • Nayak AK, Vijayan PK (2008) Flow instabilities in boiling two-phase natural circulation systems: a review. Sci Technol Nucl Install, 1–15

    Google Scholar 

  • Netz H, Wagner W (1994) Betriebshandbuch Wärme, 4th edn. Verlag Dr. Ingo Resch GmbH., Gräfelfing

    Google Scholar 

  • Nishikawa K, Sekoguchi K, Nakasatomi M (1973) Two-phase flow in spirally grooved tubes. Bull JSME 16(102):1918–1927

    Article  Google Scholar 

  • Nishikawa K, Fujii T, Yoshida S, Ohno M (1974) Flow boiling crisis in grooved boiler-tubes. In: 5th int. heat transfer conference, Vol 4. Tokyo, Japan, pp 270–274

    Google Scholar 

  • Nowotny P (1982) Ein Beitrag zur Strömungsberechnung in Rohrnetzwerken. Progress report VDI 102, VDI Verlag, Düsseldorf

    Google Scholar 

  • Oka Y (2014) Nuclear reactor design. An advanced course in nuclear engineering. Springer Press, Japan

    Google Scholar 

  • Ozawa M, Akagawa K, Sakaguchi T (1979) Flow instabilities in parallel-channel flow systems of gas-liquid two-phase mixtures. Bull JSME 22(17):1113–1118

    Article  Google Scholar 

  • Ozawa M, Nakanishi S, Ishigai S, Mizuta Y, Taruili H (1984) Flow instabilities in boiling channels; part i, pressure drop oscillations. Int J Multiphase Flow 15(4):639–657

    Article  Google Scholar 

  • Ozawa M, Akagawa K, Sakaguchi T (1989) Flow instabilities in parallel-channel flow systems of gas-liquid two-phase mixtures. Int J Multiphase Flow 15(4):639–657

    Article  Google Scholar 

  • Padki MM, Liu HT, Kakaç S, Veziroglu TN, Chen XL (1991a) Experimental and theoretical investigations of two-phase flow pressure-drop type and thermal oscillations. In: Proceedings of the 2nd int. symposium on multi-phase and heat transfer. Xian, China

    Google Scholar 

  • Padki MM, Liu HT, Kakaç S (1991b) Two-phase flow pressure-drop type and thermal oscillations. Int J Heat Fluid Flow 34(3):240–248

    Article  Google Scholar 

  • Padki MM, Palmer K, Kakaç S, Veziroglu TN (1992) Bifurcation analysis of pressure-drop oscillations and the Ledinegg instability. Int J Heat Mass Transf 35(2):525–532

    Article  MATH  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publ. Corp., Washington, New York, London

    MATH  Google Scholar 

  • Pich R (1983) Näherungsgleichungen zur Abschätzung der instationären Wärmespannungen in krümmungsbehinderten Platten, Hohlzylindern und Hohlkugeln bei linear veränderter Leittemperatur. VGB Kraftwerkstechnik 63(10):915–924

    Google Scholar 

  • Pich, R (1993) Allgemeine Betrachtungen über instationäre Wärmespannungen in krümmungsbehinderten Platten, Hohlzylindern und Hohlkugeln mit ebenen symmetrischen Temperaturfeldern. Dissertation, Vienna University of Technology

    Google Scholar 

  • Podowski M, Taleyarkhan RP, Lahey Jr. RT (1983) Channel-to-channel instabilities in parallel channel boiling system. Trans Am Nucl Soc 44:383–384

    Google Scholar 

  • Profos P (1947) Die Stabilität der Wasserverteilung in Zwanglauf-Heizflächen. Technische Rundschau Sulzer, Vol 1

    Google Scholar 

  • Profos P (1959) Die Stabilisierung der Durchflussverteilung in Zwanglaufheizflächen. Energie 11(6):241–247

    Google Scholar 

  • Rassoul N, Hamidouche T, Si-Ahmed EK, Bousbia-Salah A (2005) Simplified numerical model for predicting onset of flow instability in parallel heated channels. In: The 11th int. topical metting on nuclear reactor thermal-hydraulics (NURETH-11). Avignon, France

    Google Scholar 

  • Reinecke N (1996) Fluiddynamische Instabilitäten. Hochschulkurs “Mehrphasenströmungen in der Verfahrenstechnik”. University of Hannover, Germany, S 4–31

    Google Scholar 

  • Richter H (1962) Rohrhydraulik, 4th edn. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Ruspini, LC (2013) Experimental and numerical investigation on two-phase flow instabilities. Dissertation, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  • Satoh A, Okamoto K, Madarame H (2001) Unstable behaviour of single-phase natural circulation under closed loop with connecting tube. Exp Thermal Fluid Sci 25:429–435

    Article  Google Scholar 

  • Schmidt D (1967a) Instationäre Wärmespannungen in einer Frischdampfleitung. Energie 19(12):393–398

    Google Scholar 

  • Schmidt D (1973) Über die Berechnung instationärer Wärmespannungen. Rohre - Rohrleitungsbau - Rohrleitungstransport, Nr. 5/6:236–245

    Google Scholar 

  • Schröder HJ (1979) Betriebserfahrungen mit dampfberührten Anlagenteilen von Druckwasserreaktoren aus chemischer Sicht. VGB Kraftwerkstechnik 59(3):195–199

    Google Scholar 

  • Semedard JC, Scheffknecht G (1997) Moderne Abhitzekessel. VGB Kraftwerkstechnik 77(12):1028–1035

    Google Scholar 

  • Srinivas B, Pushpavanam S (2000) Determining parameters where pressure drop oscillations occur in a boiling channel using singularity theory and the d-partition method. Chem Eng Sci 55:3771–3783

    Article  Google Scholar 

  • Stamatelopoulos GN, Scheffknecht G, Sadlon ES (2003) Supercritical boilers and power plants: experience and perspectives. Power-Gen Europe 2003. Düsseldorf, Germany, 1–17

    Google Scholar 

  • Stamatelopoulos GN, Weissinger, G (2005) Die nächste Generation von Steinkohlekraftwerken. VGB Konferenz “Kraftwerke im Wettbewerb 2005: Ordnungspolitik, Markt und Umweltschutz”. Potsdam, Germany, S 49–53

    Google Scholar 

  • Stenning AH, Veziroglu, TN (1965) Flow oscillations modes in forced convection boiling. In: Proc. 1965 Heat Transfer and Fluid Mech. Inst., Stanfort Univ. Press, pp 301–316

    Google Scholar 

  • Stenning AH, Veziroglu TN, Callahan GM (1967) Pressure drop oscillations in forced convection flow with boiling. In: Proc. Symp. on Two-Phase Flow Dynamics. Eindhoven, pp 405–427

    Google Scholar 

  • Strauß K (1985) Kriterien für den Einsatz unterschiedlicher Dampferzeugersysteme bei Kraftwerks-Dampferzeugern. In: Jahrbuch der Dampferzeugertechnik, Vol 1, 5th edn., Vulkan Verlag, Essen, S 332–342

    Google Scholar 

  • Strauß K (1992) Kraftwerkstechnik: zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Stribersky A, Linzer W (1984) Ein Beitrag zum Problem der Stabilität beim Naturumlauf. Progress report VDI 154, VDI Verlag, Düsseldorf

    Google Scholar 

  • Su G, Jia D, Fukuda K, Guo Y (2001) Theoretical study on density wave oszillation of two-phase natural circulation under low quality conditions. J Nucl Sci Technol 38(8):607–613

    Article  Google Scholar 

  • Swenson HS, Carver JR, Szoeke G (1962) The effects of nucleate boiling versus film boiling on heat transfer in power boiler tubes. Trans ASME Ser A J Heat Transf 84:365–371

    Google Scholar 

  • Takeda T, Kawamura H, Seki M (1987) Natural circulation in parallel vertical channel with different heat inputs. Nucl Eng Des 104:133–143

    Article  Google Scholar 

  • Takitani K, Takemura T (1978) Density wave instability in once-through boiling flow system, (I) experiment. J Nucl Sci Technol 15(5):355–364

    Article  Google Scholar 

  • Takitani K, Sakano K (1979) Density wave instability in once-through boiling flow system, (III) distributed parameter model. J Nucl Sci Technol 16(1):16–29

    Article  Google Scholar 

  • Taler J (1986) Dynamisches Verhalten dickwandiger Dampferzeugerbauteile. Brennstoff-Wärme-Kraft 38(1/2):20–25

    Google Scholar 

  • Taler J (1997) Überwachung von instationären Wärmespannungen in dickwandigen Bauteilen. Forschung im Ingenieurwesen 63:127–13

    Article  Google Scholar 

  • Taleyarkhan RP, Podowski MZ, Lahey Jr. RT (1981) Stability analysis of a nonuniformly heated boiling channel. Trans Am Nucl Soc 38:771–773

    Google Scholar 

  • Taleyarkhan RP, Podowski MZ, Lahey Jr. RT (1985) A instability analysis of ventilated channels. Trans ASME Ser C J Heat Transf 107:175–181

    Article  Google Scholar 

  • Thelen F (1981) Strömungsstabilität in Verdampfern von Zwangsdurchlaufdampferzeugern. VGB Kraftwerkstechnik 61(5):357–367

    Google Scholar 

  • Thomas HJ (1975) Thermische Kraftanlagen. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Tippkötter Th, Schütz M, Scheffknecht G (2003) Start-up and operational experience with the 1000 MW ultra-supercritical boiler niederaussem in Germany. POWER-Gen Europe 2003. Düsseldorf, Germany, pp 1–21

    Google Scholar 

  • Todreas NE, Kazimi MS (2012) Nuclear systems volume I: Thermal hydraulic fundamentals, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Tong LS, Currin HB, Larsen JPS, Smith OG (1966) Influence of axially non-uniform heat flux on DNB. AIChE Chem Eng Prog Symp Ser 62(64):35–40

    Google Scholar 

  • Tong LS (1968) Boundary–Layer analysis of the flow boiling crisis. Int J Heat Mass Transf 11:1208–1211

    Article  Google Scholar 

  • Tong LS, Tang YS (1997) Boiling heat transfer and two-phase flow, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  • Truckenbrodt E (1983) Lehrbuch der angewandten Fluidmechanik. Springer, Berlin, Heidelberg, New York, Tokyo

    Book  Google Scholar 

  • Uerlings R, Bruch U, Meyer H (2008) KOMET 650 - Untersuchungen des Betriebsverhaltens von Kesselwerkstoffen sowie deren Schweißverbindungen bei Temperaturen bis 650 tccelsius. VGB PowerTech 88(3):43–49

    Google Scholar 

  • Ünal HC (1982) The period of density-wave oscillations in forced convection steam generator tubes. Int J Heat Mass Transf 25(3):419–422

    Article  Google Scholar 

  • Veziroglu TN, Lee SS (1969) Boiling flow instabilities in parallel channels. In: Proceedings of the Institution of Mechanical Engineers, Vol 184, pp 7–17

    Google Scholar 

  • Veziroglu TN, Lee SS (1971) Boiling-flow instabilities in a cross-connected parallel channel upflow system. National Heat Transfer Conference, ASME Paper 71-HT-12, ASME. New York

    Google Scholar 

  • Wallis GG, Heasley JH (1961) Oscillations in two-phase flow systems. Trans ASME Ser C J Heat Transf 83:363–369

    Article  Google Scholar 

  • Walter H (2001) Modellbildung und numerische Simulation von Naturumlaufdampferzeugern. Progress report VDI 457, VDI Verlag, Düsseldorf

    Google Scholar 

  • Walter H, Linzer W (2002a) Einfluss der dynamischen Simulation auf die Geometrie der Überströmrohre eines Abhitzedampferzeugers. Modellierung und Simulation von Dampferzeugern und Feuerungen, VDI-Report Nr. 1664. VDI-Gesellschaft Energietechnik, Braunschweig, Germany: Verein Deutscher Ingenieure, 131–141

    Google Scholar 

  • Walter H, Weichselbraun A (2002b) Ein Vergleich unterschiedlicher Finite-Volumen-Verfahren zur dynamischen Simulation beheizter Rohrnetzwerke. Progress report VDI 477, VDI Verlag, Düsseldorf

    Google Scholar 

  • Walter H, Linzer W (2003a) Flow stability of natural circulation steam generators. In: Padet J, Arinc F (eds) Int. symposium on transient convective heat and mass transfer in single and two-phase flows. Int. Center for Heat and Mass Transfer, Begell House Inc., New York, pp 235–244

    Google Scholar 

  • Walter H, Linzer W (2004a) Flow stability of heat recovery steam generators. In: Proceedings of the ASME Turbo EXPO, Power for Land, Sea and Air 2004, 1–9

    Google Scholar 

  • Walter H, Linzer W (2004b) Investigations to the stability of a natural circulation two-pass boiler. In: Bergles AE, Golobic I, Amon ChH, Bejan A (eds) Proceedings of the ASME - ZSIS Int. thermal science seminar II, pp 469–474

    Google Scholar 

  • Walter H, Linzer W, Schmid Th (2005) Dynamic flow instability of natural circulation heat recovery steam generators. In: ISTP-16, Proceedings of the 16th int. symposium on transport phenomena. Pacific Center of Thermal-Fluids Engineering, pp 1–11

    Google Scholar 

  • Walter H, Linzer W (2005b) Influence of the boiler design on the flow stability of natural circulation heat recovery steam generators. Int. III Scientific and Technical Conference 2005, Energy from Gas, Vol. 2. Polityechnika Ślaska, Gliwice, Poland: UKiP s.c. J&D Gebka, pp 337–348

    Google Scholar 

  • Walter H, Linzer W (2005c) Numerical simulation of a three stage natural circulation heat recovery steam generator. IASME Trans 2(8):1343–1349

    Google Scholar 

  • Walter H (2006a) Ein Beitrag zur statischen und dynamischen Stabilität von Naturumlaufdampferzeugern. Progress report VDI 546, VDI Verlag, Düsseldorf

    Google Scholar 

  • Walter H, Linzer W (2006b) Flow reversal in a horizontal type natural circulation heat recovery steam generator. In: Proceedings of the ASME Turbo EXPO, Power for Land, Sea and Air 2006, pp 1–9

    Google Scholar 

  • Walter H, Linzer W (2006c) Flow stability of heat recovery steam generators. Trans ASME Ser D J Eng Gas Turbines Power 128:840–848

    Article  Google Scholar 

  • Walter H, Linzer W (2006d) Reverse flow in natural circulation systems with unequally heated tubes. WSEAS Trans Heat Mass Transf 1(1):3–10

    Google Scholar 

  • Walter H, Linzer W (2006e) Stability analysis of natural circulation systems. In: Long CA, Sohrab SH, Catrakis H, Fedorov AG, Sotiropoulos F, Benim AC, Wang G Pham T (eds) Proceedings of the 2006 IASME/WSEAS int. conference on HEAT and MASS TRANSFER. WSEAS, 18.-20. January, Miami, Florida, USA, pp 62–68

    Google Scholar 

  • Walter H, Linzer W (2006f) The influence of the operating pressure on the stability of natural circulation systems. Appl Thermal Eng 26(8–9):892–897

    Article  Google Scholar 

  • Walter H (2007a) Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms – A comparison of four algorithms. Simul Model Pract Theory 15:565–588

    Article  Google Scholar 

  • Walter H (2007b) Numerical analysis of density wave oszillations in the horizontal parallel tube paths of the evaporator of a natural circulation heat rocovery steam generator. In: Sorab SH, Catrakis HJ, Kobasko N, Necasova S (eds) Proceedings of the 5th IASME/WSEAS int. conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE07). WSEAS, Vouliagmeni, Athens, Greece, pp 172–179

    Google Scholar 

  • Wang Q, Chen XJ, Kakaç S, Ding Y (1994) An experimental investigation of density-wave-type oscillation in a convective boiling upflow system. Int J Heat Fluid Flow 15(3):241–246

    Article  Google Scholar 

  • Watson GB, Lee RA, Wiener M (1974) Critical heat flux in inclined and vertical smooth and ribbed tubes. In: Proceedings of the 5th int. heat transfer conference, Vol 4. Tokyo, Japan, pp 275–279

    Google Scholar 

  • Wedekind GL (1971) An experimental investigation into the oscillatory motion of the mixture-vapor transition point in horizontal evaporating flow. J Heat Transf 93:47–54

    Article  Google Scholar 

  • Weissinger G, Dutt S (2004) Supercritical steam generators - a technology for high efficiency and flexible operation mode. POWER India 2004. Mumbai, India, pp 1–21

    Google Scholar 

  • Weston MSt (2007) Nuclear reactor physics, 2nd edn. WILEY-VCH Press GmbH. & Co., Weinheim

    Google Scholar 

  • Wörrlein K (1975) Instabilitäten bei der Durchflussverteilung in beheizten Rohrsträngen von Dampferzeugern. VGB Kraftwerkstechnik 55(8):513–518

    Google Scholar 

  • Xu RD, Zhang YL, Zhu C (1984) The effects of using 4-ribbed tube on improving heat transfer in boiler water wall tubes. In: Chen HCh, Veziroǧlu TN (eds) Two-phase flow and heat transfer: China - U.S. progress. Hemisphere Pub. Corp., Sian, China, pp 317–325

    Google Scholar 

  • Yadigaroglu G, Bergles AE (1969) An experimental and theoretical study of density-wave oscillation in two-phase flow. MIT Report DSR 74629-3, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Yadigaroglu G, Bergles AE (1972) Fundamental and higher-mode density-wave oscillations in two-phase flow. Trans ASME Ser C J Heat Transf 94:189–195

    Article  Google Scholar 

  • Yadigaroglu G (1981) Two-phase flow instabilities and propagation phenomena. In: Delhaye JM, Giot M, Riethmuller ML (eds) Thermohydraulics of two-phase systems for industrial design and nuclear engineering. McGraw Hill Book Company, St. Louis, New York, San Francisco, pp 353–403

    Google Scholar 

  • Yun G, Su GH, Wang JQ, Tian WX, Qiu SZ, Jia DN, Zhang JW (2005) Two-phase instability analysis in natural circulation loops of China advanced research reactor. Ann Nucl Energy 32:379–397

    Article  Google Scholar 

  • Zheng Q (1991a) Reibungsdruckverlust von Gas/Flüssigkeitsströmungen in glatten und innenberippten Rohren. Dissertation, Technical University of Erlangen-Nürnberg

    Google Scholar 

  • Zheng Q, Köhler W, Kastner W, Riedle K (1991b) Druckverlust in glatten und innenberippten Verdampferrohren. Wärme- und Stoffübertragung 26:323–330

    Article  Google Scholar 

  • Ziegler A (1983) Lehrbuch der Reaktortechnik: Volume 1 Reaktortheorie. Springer, Berlin, Heidelberg, New York, Tokyo

    Book  Google Scholar 

  • Ziegler A (1984) Lehrbuch der Reaktortechnik: Volume 2 Reaktortechnik. Springer, Berlin, Heidelberg, New York, Tokyo

    Book  Google Scholar 

  • Ziegler A (1985) Lehrbuch der Reaktortechnik: Volume 3 Kernkraftwerkstechnik. Springer, Berlin, Heidelberg, New York, Tokyo

    Book  Google Scholar 

  • Zindler H, Walter H, Hauschke A, Leithner R (2008) Dynamic simulation of a 800 MW el hard coal one-through supercritical power plant to fulfill the Great Britain grid code. In: Proceedings of the 6th IASME/WSEAS int. conference on HEAT TRANSFER, THERMAL ENGINEERING and ENVIRONMENT (HTE08). WSEAS Press, WSEAS, Rhodes Island, Greece

    Google Scholar 

  • Zoebl H, Kruschik J (1982) Strömung durch Rohre und Ventile, 2nd edn. Springer, Wien, New York

    Book  Google Scholar 

  • Zvirin Y, Jeuck III. PR, Sullivan CW, Duffey RB (1981) Experimental and analytical investigation of a natural circulation system with parallel loops. Trans ASME Ser C J Heat Transf 103:645–652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Walter, H., Ponweiser, K. (2017). Boiler Simulation—Simulating the Water and Steam Flow. In: Walter, H., Epple, B. (eds) Numerical Simulation of Power Plants and Firing Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4855-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4855-6_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4853-2

  • Online ISBN: 978-3-7091-4855-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics