Mineral Matter Transformation in Furnaces



Coal is a fossil fuel and differs from one mining region to another. Both the organic and the inorganic (mineral) composition varies in the coals of various coalfields. In principle, these facts also apply to biomass. The fraction of the incombustible mineral components that accumulates as ash lies somewhere between 5 % and 35 % and even more. Ash characteristics have a significant influence on slagging and consequently on the design of combustion chambers, because slagging severely affects heat transfer, endangering the operation of the steam generator—so the reduction or prevention of slagging in combustion chambers is of great economic importance. Even today it is still difficult to predict the amount of slagging which may occur in a new steam generator, or in one designed for one particular type of coal, but which has to be converted to burn a different type of coal. And this still holds true, even though studies have been carried out all over the world for years now in numerous attempts to solve the problems ranging from changes in mineral materials during coal combustion to slagging in combustion chambers—see (Rost and Ney 1956), (Gumz et al. 1958), (Kirsch 1965), (Reichelt and Groß 1966), (Beising et al. 1972), (Förtland 1958), (Wall et al. 1965), (Singer 1981), (Dunken 1981), (Kautz and Zelkowski 1984), (Huffman et al. 1981), (Haynes and Neville 1982), (Brostow and Macip 1983), (Bryers and Walchuk 1984), (Koch and Janke 1984), (Raask 1985), (ten Brink 1987), (ten Brink et al. 1992a), (ten Brink et al. 1992b), (ten Brink et al. 1992c), (ten Brink et al. 1993a), (ten Brink et al. 1993b), (ten Brink et al. 1994), (ten Brink et al. 1997), (Srinivasachar et al. 1989a), (Srinivasachar et al. 1990b), (Srinivasachar et al. 1990a), (Helble et al. 1990), (Frenzel et al. 1988), (Srinivasachar and Boni 1989b), (Winegartner and Rhodes 1975), (Brown 1986), (Koschack 1998), (Altman 1988), (Wilemski et al. 1991), (Nash 1985), (Boni et al. 1989). The results up until now, however, have been generally empirical—and the knowledge about the slagging formation processes—knowledge that would enable us to predict how slagging would occur in changed conditions—is simply not available.


Combustion Chamber Steam Generator Particle Trajectory Brown Coal Coal Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altman W (1988) First step towards an expert system concerning the rediction of the slagging and fouling behaviour of fuels and furnaces. Report, Technical University of DresdenGoogle Scholar
  2. Angel CA, Chessman PA, Kadiyala RR (1987) Diffusivity and thermodynamic properties of diopside and jadeite melts by computer simulation studies. Chem Geol 62:83–92CrossRefGoogle Scholar
  3. Atkinson LV, Harley PJ, Hudson JD (1996) Numerical methods with FORTRAN 77. Addison-Wesley Publishing, Menlo ParkMATHGoogle Scholar
  4. Barin I (1993) Thermochemical data of pure substancies. VCH, New York, pp 121–125Google Scholar
  5. Beer JM, Sarofim AF, Barta LE (1991) From coal mineral matter properties to fly ash deposition tendencies: a modelling route. In: Inorganic Transformations and Ash Deposition During Combustion, pp 71–93Google Scholar
  6. Beising R, Kautz K, Kirsch H (1972) Die Mineralsubstanz der niederrheinischen Braunkohlen. VGB-Kraftwerkstechnik, vol 52Google Scholar
  7. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system: Na 2 O - K 2 O - CaO - MgO - FeO - Fe 2 O 3 - Al 2 O 3 - SiO 2 - TiO 2 - H 2 O - CO 2. J Petrol 29:445–522Google Scholar
  8. Bernstein W, Hildebrand V, Holfeld T (1999) Modellierung der Verbrennung und ihre Validierung am Originalbraunkohledampferzeuger eines 800 MW Blockes. VDI-Report, Vol 1942Google Scholar
  9. Bockelie MJ, Adams BR, Cremer MA, Davis KA, Eddings EG, Valentine JR, Smith PJ, Heap MP (1998) Computational simulations of industrial furnaces. In: Int. symp. on computational technologies for fluid/thermal/chemical systems with industrial applications. San Diego, CaliforniaGoogle Scholar
  10. Bon, AA, Sarofim A, Beer MJ, Peterson WT, Wendt OLJ, Huffman PG, Huggins EF, Helble JJ, Srinivasachar J (1989) Transformations of inorganic coal constituens in combustion system. PSI Technology Company, Quarterly Report Nr. 12Google Scholar
  11. Božić O, Müller H, Leithner R (1998) Berechnung der Verschlackung in den Brennkammern von kohlenstaubgefeuerten Dampferzeugern. Project AiF 10639 - final reportGoogle Scholar
  12. Bozic O, Leithner R, Brösdorf B (2000) Simulation der Kinetik eisenhaltiger Mineralphasen in einer mit Kohlenstaub befeuerten Brennkammer. VDI-GET Fachtagung “Modellierung und Simulation von Dampferzeugern und Feuerungen” 14.-15. March. VDI-Report Nr. 1534, Braunschweig, Germany, S. 129–142Google Scholar
  13. Božić O (2002) Numerische Simulation der Mineralumwandlung in Kohlenstaubfeuerungen. Dissertation, TU BraunschweigGoogle Scholar
  14. Brösdorf B (2000) Untersuchung und Modellierung der Mineralumwandlungsprozesse in Kohlenstaubfeuerungen. Master thesis, TU BraunschweigGoogle Scholar
  15. Brostow W, Macip A (1983) Prediction of solid and liquid equilibrium diagrams for binary mixtures forming solid solutions with an extremum. In: Material Research Society Symposium Proceedings, pp 217–222Google Scholar
  16. Brown J (1986) Semi-quantitative ESCA examination of coal and coal ash surface. Fuel 60:439CrossRefGoogle Scholar
  17. Bryers RW, Walchuk OR (1984) Zum Einfluss von Pyrit auf die Verschlackung von Feuerräumen. Int. VGB-Konferenz “Verschlackungen, Verschmutzungen und Korrosionen in Wärmekraftwerken” 28.02.–02.03., pp 276–311Google Scholar
  18. Bucher K, Frey M (1994) Petrogenesis of metaformic rocks. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  19. Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRefGoogle Scholar
  20. DIN 51719 (1997) Prüfung fester Brennstoffe – Bestimmung des AschegehaltsGoogle Scholar
  21. Dobrowolski R, Ehlers C, Strelow M (2009) Messung der Schadstoffkonzentration im Abgas einer Kohlegasfeuerung. Lecture notes, Institute of Energy and Process Systems Engineering, University of BraunschweigGoogle Scholar
  22. Dubey KS, Ramachandrarao P, Lele S (1996) Themodynamic and viscous behaviour of undercooled liquids. Thermochimica Acta 280/281:25–62CrossRefGoogle Scholar
  23. Dunken HH (1981) Physikalische Chemie der Glasoberfläche. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  24. Effenberger H (1989) Dampferzeuger. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  25. Epple B, Krohmer B (2005c) Zwei-Phasenströmungsmodelle zur Simulation von Kohlenstaubfeuerungen im systematischen Vergleich. 22. Deutscher Flammentag “Verbrennung und Feuerungen”, VDI-Report Nr. 1888. VDI-Gesellschaft Energietechnik, Braunschweig, Germany: Verein Deutscher IngenieureGoogle Scholar
  26. Eriksson G, Hack K (1990) ChemSage - A computer program for the calculation of complex chemical equilibria. Metall Trans, 1013Google Scholar
  27. Essenhigh RH (1981) Fundamentals of coal combustion of chemistry of coal utillisation. In: Elliot MA (Hrsg), 2nd edn. New York, pp 1153–1312Google Scholar
  28. Fischer KC (1998) Dreidimensionale Simulation der Gas-Fest-Stoffströmung in kohlegefeuerten Dampferzeugern. Dissertation, TU BraunschweigGoogle Scholar
  29. Förtland T (1958) Investigation of silicate groups in fused mixtures by phase diagram measurements. J Am Ceram Soc, 524Google Scholar
  30. Frenzel M, Göldner R, Wagner D (1988) Möglichkeiten radiometrischer Messmethoden zur Brennstoff-Bewertung. KWT Kolloquium, TU DresdenGoogle Scholar
  31. Gumz W, Kirsch H, Mackowsky MT (1958) Schlackenkunde. Springer, BerlinCrossRefGoogle Scholar
  32. Haynes BS, Neville M (1982) Factors governing the surface enrichment of fly ash in volatile trace species. J Colloid Interface Sci 87:266–278CrossRefGoogle Scholar
  33. Hecken M, Reichelt L, Renz U (1999) Numerical simulation of slagging films in the pressurized coal combustion facility Aachen. In: 4th ISCC int symposium on coal combustion. Beijing, ChinaGoogle Scholar
  34. Heitmüller RJ, Müller H (1999) Untersuchung der Brennkammerverschmutzung mit einem mathematischen Modell. VGB Kraftwerkstechnik 79(2):53–57Google Scholar
  35. Helble JJ, Srinivasachar S, Boni AA (1990) The behaviour of clay minerals under combustion conditions. PSI Technology Company, Nr. Andover, MA 01810Google Scholar
  36. Hoppe A (2005) Einfluss der Alkalien bei der Ansatzbildung in Kohlenstaubfeuerungen. Dissertation, TU BraunschweigGoogle Scholar
  37. Huffman GP, Huggins FE, Dunnengre GR (1981) Investigations of the high temperature behaviour of coal ash in reducing ash oxidizing atmospheres. Fuel 60:585–597CrossRefGoogle Scholar
  38. Hummel FA (1984) Introduction to phase equilibriua in ceramic systems. Marcel Decker Inc., New YorkGoogle Scholar
  39. Kang SG (1991) Fundamental studies of mineral matter transformation during pulverized coal combustion. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  40. Kautz K, Zelkowski K (1984) Verschlackungs-, Verschmutzungs- und Korrosionsprobleme bei der Verbrennung von Steinkohle weltweiter Herkunft. In: Int. VGB-Konferenz “Verschlackungen, Verschmutzungen und Korrosionen in Wärmekraftwerken”, pp 206–248Google Scholar
  41. Kipp S, Becker KD (1999) Experimentelle Untersuchungen zum Projekt AiF 11548, Report: Phase 1–2Google Scholar
  42. Kipp S, Becker KD (2000a) Experimentelle Untersuchungen zum Projekt AiF 11548, Report: Phase 3–4Google Scholar
  43. Kipp S, Becker KD (2000b) Experimentelle Untersuchungen zum Projekt AiF 11548, Report: Phase 5–6Google Scholar
  44. Kirsch H (1965) Das Schmelz- und Hochtemperaturverhalten von Kohlenaschen Teil I: Rohstoff Kohle - Mineralsubstanz - Ascheschmelzverfahren. Technische Überwachung 6:203–209Google Scholar
  45. Klika Z, Weiss Z, Chmielova M (1988) “A method of quantitative mineralogical analysis of rocks and their elementary chemical analysis”. In: Proceedings of the 10th conference on clay mineralogy and petrology. Ostrava, Czech Republic, 11–18Google Scholar
  46. Koch K, Janke D (1984) Schlacken in der Metallurgie. Verlag Steineisen MBH., DüsseldorfGoogle Scholar
  47. Koschack R (1998) Bestimmung der Partikeltemperatur in Kohlenstaubfeuerungen in Hinblick auf eine gezielte Verbrennungstechnologische Minderung der Verschlackungsneigung. Dissertation, TU DresdenGoogle Scholar
  48. Kremer H, Hemmerich HD, Wirtz S (1998) Feuerungstechnik. VGB Kraftwerkstechnik 78:121–125Google Scholar
  49. Leithner R, Müller B (1987) Reduction of NO x-emission in coal-fired boilers. In: Int symp of coal combustion. Peking, ChinaGoogle Scholar
  50. Leithner R, Müller H (1991b) Dreidimensionale numerische Berechnung der Kohleverbrennung und des SNCR-Verfahrens. 15. Deutscher Flammentag “Verbrennung und Feuerungen”, VDI-Report Nr. 922. VDI-Gesellschaft Energietechnik, Bochum, Germany: Verein Deutscher Ingenieure, S 87–88Google Scholar
  51. Levin ME, Robins RC, McMurdie H (1964) Phase diagrams for ceramists (Vol. 1). The American Ceramic Society, ColumbusGoogle Scholar
  52. Levin ME, Robins RC, McMurdie H (1975) Phase diagrams for ceramists (Vol. 2). The American Ceramic Society, ColumbusGoogle Scholar
  53. Magda A (2012) Modelling of mineral matter transformation and depositions in furnaces. Dissertation, Technical University of BraunschweigGoogle Scholar
  54. Magda I (2012) Modelling of transformation and deposition of alkaline compounds under combustion conditions. Dissertation, Technical University of BraunschweigGoogle Scholar
  55. Malek J (1995) The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochemica Acta 267:61–73CrossRefGoogle Scholar
  56. Monroe LS (1989) An experimental and modelling study of residual fly ash forming during combustion of bituminous coal. Dissertation, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  57. Muan A, Osborn EF (1962) Phase equilibria as a guide in refractory technology. Am Ceram Soc 41:450–455Google Scholar
  58. Müller H (1992) Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung. Progress report VDI 268, VDI Verlag, DüsseldorfGoogle Scholar
  59. Müller J (1994) Numerische Simulation der NO- und SO-Emissionen von zirkulierenden Wirbelschichtfeuerungen. Dissertation, TU BraunschweigGoogle Scholar
  60. Müller H, Heitmüller RJ (1997) Untersuchung der Brennkammerverschmutzung mit einem mathematischen Modell. VGB Fachtagung “Feuerungen 1997”. Essen, GermanyGoogle Scholar
  61. Nash P (1985) Approaches to computer representation of phase diagrams. In: Proceedings: symposium on computer modelling of phase diagrams at the 1985 fall meeting of the metallurgical soc. of the American Institute of Mining, Metallurgical and Petroleum Engineers Toronto, Canada, 13.–17.10.1985, S 331–342Google Scholar
  62. Nusser P (1985) Die Abhängigkeit der Feuerraumverschlackung vom wandnahen Temperaturprofil. Preprint AdW, Vol 2Google Scholar
  63. Paktunc AD (1998) Modan: An interactive computer program for estimating mineral quantities based on bulk composition. Comput Geosci 24(5):425–431CrossRefGoogle Scholar
  64. Päuker W (2001) Numerische Brennkammersimulation - Rückwirkung der Rauchgasrücksaugung und Mahltrocknung auf den Zustand im Brenner. Dissertation, TU BraunschweigGoogle Scholar
  65. Pawlowski J (1971) Die Ähnlichkeitstheorie in der physikalisch-technischen Forschung. Grundlagen und Anwendung. Springer, New YorkCrossRefGoogle Scholar
  66. Posch M, Kurz D (2007) A2M - A program to compute all possible mineral modes from geochemical analyses. Comput Geosci 33:563–572CrossRefGoogle Scholar
  67. Raask E (1985) Mineral impurities in coal combustion. Springer, BerlinGoogle Scholar
  68. Rath R (1990) Mineralogische Phasenlehre. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  69. Reichelt W, Groß B (1966) Methoden zur Berechnung von Schmelzdiagrammen binärer Oxidsysteme. Institute for Nuclear Technology, TU Berlin, BerlinGoogle Scholar
  70. Rosen OM, Abbyasov AA (2003) The quantitative mineral composition of sedimentary rocks: calculation from chemical analyses and assessment of adequacy (MINLITH computer program). Lithol Miner Resour 38(3):299–312CrossRefGoogle Scholar
  71. Rost F, Ney P (1956) Zur Kenntnis der Kesselschlacken. Notes from the institute for mineralogy of the Technical University of Munich, Vol 37Google Scholar
  72. Salamang H, Scholze H (1982) Keramik - Teil 1: Allgemeine Grundlagen und wichtige Eigenschaften. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  73. Scheffknecht G, Leithner R, Epple B, Müller M, Klenk A (2012) Korrosion und Verschlackung in Hochtemperaturkraftwerken mit neuen Werkstoffen - Abschlussbericht zum Forschungssvorhaben - Förderkennzeichen FKZ 0327744A-E. Technische Informationsbibliothek HannoverGoogle Scholar
  74. Schiller A (1999) Optimierung der Simulation von Kohlenstaubfeuerungen. Progress report VDI 416, VDI Verlag, DüsseldorfGoogle Scholar
  75. Schmalzried H (1995) Chemical kinetics of solids. VCH Verlagsgesellschaft mbH, WeinheimCrossRefGoogle Scholar
  76. Sestak J (1996) Use of phenomenological kinetics and the enthalpy versus temperature diagramm (and its derivative-DTA) for a better understanding of transition processes in glasses. Thermochimica Acta 280/281:175–190CrossRefGoogle Scholar
  77. Singer GJ (1981) Combustion - fossil power systems (a reference book on fuel burning and steam generation). Comb. Eng. Inc., New YorkGoogle Scholar
  78. Smooth ID (1993) Fundamentals of coal combustion. Elsevier Verlag, London, New YorkGoogle Scholar
  79. Srinivasachar S, Helble JJ, Boni AA (1989a) A physical and chemical basis for understanding inorganic mineral transformations in coals based on model-mineral experiments. Div Fuel Chem 34:347–354Google Scholar
  80. Srinivasachar S, Boni AA (1989b) A kinetic Model for pyrit transformations in a combustion environment. Fuel 68:828–836CrossRefGoogle Scholar
  81. Srinivasachar S, Helble JJ, Boni AA, Shah N, Huffman PG, Huggins FE (1990a) Mineral behaviour during coal combustion: 2. lllite Transformations. Prog Energy Combust Sci 16:293–302CrossRefGoogle Scholar
  82. Srinivasachar S, Helble JJ, Boni AA, Katz BC (1990b) Transformations and stickiness of minerals during pulverized coal combustion; mineral matter and ash deposition from coal. Engineering Foundation Press, New YorkGoogle Scholar
  83. Starke A, Horlbeck W, Brause T, Mayer B, Willmes O, Glaser W (2000a) Thermodynamische Modellierung von Kohleschlacke-Systemen. Brennstoff-Wärme-Kraft, Vol 52, S 45–48Google Scholar
  84. Starke A, Mayer B (2000b) Thermodynamische Realmodellierung des Ascheschmelzverhaltens und der Alkaliflüchtigkeit in Wechselwirkung mit der Gasatmosphäre. VDI-GET Fachtagung “Modellierung und Simulation von Dampferzeugern und Feuerungen”. VDI-Report Nr. 1534, Braunschweig, Germany, S 111–118Google Scholar
  85. Strelow M (2013) Mineralumwandlung in Feuerungen. Dissertation, Technical University of BraunschweigGoogle Scholar
  86. Tanaka H (1995) Thermal analysis and kinetics of solid state reactions. Thermochimica Acta 267:29–44CrossRefGoogle Scholar
  87. ten Brink HM (1987) Mineral matter behaviour transformations and slag formation in pulverized coal combustion. Results of the desk study MMT-OGoogle Scholar
  88. ten Brink HM, Eenkhoorn S, Hamburg G (1992a) Mineral matter behaviour in low-Nox combustion - a laboratory study. Netherlands Energy Research Foundation, Nr. ECN-RX-92-035Google Scholar
  89. ten Brink HM, Eenkhoorn S, Hamburg G (1992b) Mineral transformation in air-staged combustion of pulverized coal. Environ Technol 11:1Google Scholar
  90. ten Brink HM, Eenkhoorn S, Hamburg G (1992c) Mineral transformations in air-staged combustion of pulverized coal - part 2. Netherlands Energy Research Foundation, Nr. ECN-R-92-008Google Scholar
  91. ten Brink HM, Eenkhoorn S, Hamburg G (1993a) Slaging in entrained-low gasification and Low-Nox firing conditions. Netherlands Energy Research Foundation, Nr. ECN-RX-93-079Google Scholar
  92. ten Brink HM, Eenkhoorn S, Weeda M (1993b) Flame transformations of coal-siderite. Netherlands Energy Research Foundation, Nr. ECN-RX-93-080Google Scholar
  93. ten Brink HM, Smart JP, Vleeskens JM, Williamson J (1994) Flame transformations and burner slagging in a 2.5 MW furnace pulverized coal. Fuel 73:1706Google Scholar
  94. ten Brink HM, Eenkhoorn S, Hamburg G (1997) Silica findes from included quartz in pulverized-coal combustion. Fuel Process Technol 50:105–110CrossRefGoogle Scholar
  95. Uhde G (1996) Modellierung nichtisothermer Gas-Feststoffreaktionen sowie experimentelle und theoretische Untersuchungen zur Hydrochlorierung von Ferrosilicium. Dissertation, Technical University of ClausthalGoogle Scholar
  96. Vockrodt St (1994) 3-dimensionale Simulation der Kohleverbrennung in zirkulierenden atmosphärischen Wirbelschichtfeuerungen. Dissertation, TU BraunschweigGoogle Scholar
  97. Vonderbank RS (1994) Numerische Simulation der primären NO-Minderung und S02 Einbindung mit dem Trockenadditivverfahren bei braunkohlegefeuerten Dampferzeugern. Dissertation, TU BraunschweigGoogle Scholar
  98. Wall TF, Lowe A, Wibberley LJ, Stewart IMcC (1965) Mineral matter in coal and the thermal performance of large boilers. Technische Überwachung 6:203–209Google Scholar
  99. Wetzlers H (1985) Kennzahlen der Verfahrenstechnik. Hüthig VerlagGoogle Scholar
  100. Wilemski G, Srinivasachar S, Sarofim AF (1991) Modeling of mineral matter redistribution and ash formation in pulverized coal combustion. Inorganic Transformations and Ash Desposition During CombustionGoogle Scholar
  101. Winegartner EC, Rhodes BT (1975) An empirical study of the relation of chemical properties to ash fusion temperatures. J Eng Power, S 395Google Scholar
  102. Zanoto ED (1996) The applicability of the general theory of phase transformations to glass crystallization. Thermochimica Acta 280/281:73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Institute of Energy and Process Systems EngineeringTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations