Simulation of Firing and Gas Flow

  • B. Epple
  • R. Leithner
  • H. Müller
  • W. Linzer
  • H. Walter
  • A. Werner


Gaseous, liquid, and solid fuels are generally (and understandably) burned in very different furnaces—but there are of course furnaces that can be fueled with gaseous, liquid, and solid fuels.


Combustion Chamber Discrete Element Method Steam Generator Tube Bundle Finned Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adánez J, Labiano FG, Abánades JC, de Diego LF (1994) Methods for characterization of sorbents used in fluidized bed boilers. Fuel 73(3):355–362CrossRefGoogle Scholar
  2. Agarwal PK, La Nauze RD (1989) Transfer processes local to the coal particle: a review of drying, devolatilization and mass transfer in fluidized bed combustion. Chem Eng Res Des 67:457–480Google Scholar
  3. Alobaid F, Ströhle J, Epple B (2010) Numerical simulation of reactive fluidized beds for conversion of the biomass with Discrete Element Method. Workshop “Modellierung von Biomassevergasung und -verbrennung mit Hilfe der numerischen Strömungsmechanik”. Leipzig, GermanyGoogle Scholar
  4. Anthony DB, Howard JB, Hottel HC, Meissner HP (1975) Rapid devolatilization of pulverized coal. In: 15th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, vol 15, 1303–1317Google Scholar
  5. Anthony DB, Howard JB (1976) Coal devolatilization and hydrogasification. AIChE J 22(4):625–656CrossRefGoogle Scholar
  6. ASME (1998) Kap. 3, Anhang N des ASME, boiler and pressure vessel code. ASME Press, New YorkGoogle Scholar
  7. Atimtay AT (1987) Combustion of volatile matter in fluidized beds. Ind Eng Chem Res 26(3):452–456CrossRefGoogle Scholar
  8. Au-Yang HK (2001) Flow-induced vibration of power and process plant components. ASME Press, New YorkCrossRefGoogle Scholar
  9. Badzioch S, Hawksley PGW (1970) Kinetics of thermal decomposition of pulverized coal particles. Ind Eng Process Des Dev 9:521–530CrossRefGoogle Scholar
  10. Baehr HD, Stephan K (1994) Wärme- und Stoffübertragung. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  11. Baker DC, Attar A (1981) Sulfur pollution from coal combustion. Effect of the mineral components of coal on the thermal stabilities of sulphated ash and calcium sulfate. Environ Sci Tech 15(3):288–293CrossRefGoogle Scholar
  12. Bartok W, Engleman VS, Goldstein R, del Valle EG (1972) Basic kinetic studies and modeling of nitrogen oxide formation in combustion processes. AIChE Symp Ser 68(126):30–38Google Scholar
  13. Basu P, Fraser SA (1991) Circulating fluidized bed boilers. Butterworth-Heinemann, StonehamGoogle Scholar
  14. Baxter LL, Mitchel RE, Fletcher TH, Hurt RH (1996) Nitrogen release during coal combustion. Energy Fuels 10(1):188–196CrossRefGoogle Scholar
  15. Beck NC, Hayhurst AN (1990) The early stages of the combustion of pulverized coal at high temperatures. I: The kinetics of devolatilization. Combust Flame 79(1):47–74CrossRefGoogle Scholar
  16. Beckmann M (1995) Mathematische Modellierung und Versuche zur Prozessführung bei der Verbrennung und Vergasung in Rostsystemen zur thermischen Rückstandsbehandlung. CUTEC – Schriftenreihe, Nr. 21 (Clausthal)Google Scholar
  17. Berndt G (1984) Mathematisches Modell eines Naturumlauf-Dampferzeugers zur Störfallsimulation und dessen experimentelle Überprüfung. Dissertation, Technical University of StuttgartGoogle Scholar
  18. Bilitewski B, Härdtle G, Marek K (1985) Grundlage der Pyrolyse von Rohstoffen. Thome-Kozmiensky KJ (Hrsg), Pyrolyse von Abfällen. EF Verlag, 1 ffGoogle Scholar
  19. Blair DW, Wendt JOL, Bartock W (1976) Evolution of nitrogen and other species during controlled pyrolysis of coal. In: 16th Symp. (Int.) on Combustion, The Combustion Institute Pittsburgh, pp 475–489Google Scholar
  20. Blevins RD (1990) Flow-induced vibrations, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  21. Borgwardt RH (1970) Kinetics of the reaction of SO 2 with calcined limestone. Environ Sci Technol 4(Jan.):59–63CrossRefGoogle Scholar
  22. Brandt F (1995) Wärmeübertragung in Dampferzeugern und Wärmeaustauschern, 2nd edn. Bd. 2 of FDBR – Fachbuchreihe. Vulkan-Verlag, EssenGoogle Scholar
  23. Brandt F (1999a) Brennstoffe und Verbrennungsrechnung, 3rd edn. Bd. 1 of FDBR – Fachbuchreihe. Vulkan-Verlag, EssenGoogle Scholar
  24. Buerkle KJ, Heinboeckel I, Fett FN (1990) Simulation kleiner Heizwerke mit klassischer Kohlewirbelschichtfeuerung. Brennstoff-Wärme-Kraft 43(11):507–516Google Scholar
  25. Chekhovskii VV, Sirotkin VV, Chu-Dun-Chu YuV, Chebanov VA (1979) Determination of radiative view factors for rectangles of different sizes. High Temp 17:97–103Google Scholar
  26. Chen YN (1968) Flow induced vibration and noise in tube-bank heat exchangers due to von karman streets. Trans ASME J Eng Ind 134–146Google Scholar
  27. Chen YN (1971) Ursache und Vermeidung rauchgasseitiger Schwingungserscheinungen in Kesselanlagen infolge Brenngasdrall-Instabilität und Karman-Wirbelstraßen. Mitteilungen der VGB 98(2):113–123Google Scholar
  28. Chen YN (1979) Rauchgasseite Schwingungen in Dampferzeugern - Verbrennungsinstabilität und Wärmetauscherschwingungen. VGB Kraftwerkstechnik 59(5):420–433Google Scholar
  29. Coimbra CFM, Azevedo JLT, Carvalho MG (1994) 3D numerical model for predicting NOx emissions from an industrial pulverized coal combustor. Fuel 73:1128–1134CrossRefGoogle Scholar
  30. Couturier MF (1986) SO2 removal in fluidized bed combustors. Dissertation, Queen’s University, Kingston, Ontario, CanadaGoogle Scholar
  31. Couturier MF, Karidio I, Steward FR (1993) Study on the rate of breakage of various Canadian limestones in a circulating transport reactor. In: Avidan AA (ed) Proceedings, CFB IV, pp 788–793Google Scholar
  32. Cundall PA (1971) A computer model for simulating progressive large-scale movements in block rock systems. In: Proceedings of the symposium of the Int. Society of Rock Mechanics. Int. Society of Rock MechanicsGoogle Scholar
  33. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1): 47–65CrossRefGoogle Scholar
  34. Cundall PA, Hart RD (1992) Numerical modelling of diskontinua. Eng Comput 9:101–113CrossRefGoogle Scholar
  35. Dam-Johansen K, Hansen PFB, Østergaard K (1991) High-temperature reaction between sulphur dioxide and limestone-III. A grain-micrograin model and its verification. Chem Eng Sci 46(3):847–853CrossRefGoogle Scholar
  36. Daniell PT, Kono, HO (1987) A chemical reaction model for porous CaO particles and SO2 gas when the intergrain gas diffusion controls the overall rate. In: Mustonen JP (ed) 9th Int. conf. on FBC. ASME, pp 467–473Google Scholar
  37. Davidson JF, Harrison D (1963) Fluidised particles, 1st edn. Cambride University Press, CambrideGoogle Scholar
  38. Dennis JS (1985) The Desulphurisation of Flue Gases Using Calcareous Materials. Dissertation, Selwyn College, University of CambridgeGoogle Scholar
  39. Dennis JS, Hayhurst, AN (1986) A simplified analytical model for the rate of reaction of SO2 with limestone particles. Chem Eng Sci 41(1):25–36CrossRefGoogle Scholar
  40. De Soete G (1974) Overall reaction rates of NO and N2 formation from fuel nitrogen. In: 15th Symp. (Int.) on combustion, The Combustion Institute, Pittsburgh, pp 1093–1102Google Scholar
  41. de Soete G (1981) Physikalisch-chemische Mechanismen bei der Stickstoffoxidbildung in industriellen Flammen. Gas Wärme Int 39:20–28Google Scholar
  42. Doležal R (1961) Großkessel-Feuerungen. Springer, Berlin, Göttingen, HeidelbergCrossRefGoogle Scholar
  43. Doležal R (1985) Dampferzeugung. Springer, BerlinCrossRefGoogle Scholar
  44. Doležal R (1990) Dampferzeugung: Verbrennung, Feuerung, Dampferzeuger. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  45. Dryer FL, Glassman I (1972) High-temperature oxidation of CO and CH. In: 14th Symp. (Int.) on combustion, The Combustion Institute, Pittsburgh, pp 987–1003Google Scholar
  46. Durao DFG, Ferrao P, Gulyurtlu I, Heitor MV (1990) Combustion kinetics of high-ash coals in fluidized beds. Combustion Flame 79:162–174CrossRefGoogle Scholar
  47. Dymek ThG (1991) Modulares und bedienerfreundliches Rechenprogramm für die Kraftwerksdynamik. Progress report VDI 260, VDI Verlag, DüsseldorfGoogle Scholar
  48. Eisinger FL (1994) Fluid-thermoacoustic vibration of gas turbine recuperator tubular heat exchanger system. Trans ASME J Eng Gas Turbines Power 116:709–717CrossRefGoogle Scholar
  49. Eisl R, Werner A, Walter H, Haider M 2008, 13.–16. May, Hamburg, Germany. “A Comparison between CFD-Simulation and Experimental Observation of Solids Distribution in a CFB-Test Rig”. In: Proceedings of the 9th International conference on circulating fluidized beds. Hamburg, Germany, 295–300Google Scholar
  50. Epple B (1993) Modellbildung und Simulation von Strömungs-, Reaktions- und NO x-Bildungsvorgängen in technischen Feuerungen. Progress report VDI 295, VDI Verlag, DüsseldorfGoogle Scholar
  51. Epple B, Brüggemann H, Kather A (1995a) Low NOx tangential fired steam generators for bituminous coal. VGB-Konferenz. Essen, GermanyGoogle Scholar
  52. Epple B, Brüggemann H, Kather A (1995b) Low NOx tangential firing system for bituminous coal. In: 3rd Int. symposium on coal combustion (3rd ISSC). Beijing, VR ChinaGoogle Scholar
  53. Epple B, Krohmer B (2001) CFD und CFRD Application in the Field of Power Plant Technology. VDI Workshop “Computersimulation von Strömungen und Wärmetransportprozessen in der Energietechnik”. Düsseldorf, GermanyGoogle Scholar
  54. Epple B, Perez E (2003) Different Types of Pulverized Fuel Fired Boilers for the Asian Market Analyzed by Computational Reactive Fluid Dynamics (CRFD). 21. Deutscher Flammentag “Verbrennung und Feuerungen”, VDI-Report Nr. 1750. VDI-Gesellschaft Energietechnik, Cottbus, Germany: Verein Deutscher IngenieureGoogle Scholar
  55. Epple B, Keil S, Scheffknecht G, Stamatelopoulos GN (2004) Neue Steinkohlekraftwerke mit hohen Wirkungsgraden. BWK 56(7/8):44–48Google Scholar
  56. Epple B, Fiveland W, Krohmer B, Richards G, Benim A (2005a) Assessment of two-phase flow models for the simulation of pulverized coal combustion. Clean Air Int J Energy Clean Environ 6(3):267–287CrossRefGoogle Scholar
  57. Epple B, Krohmer B, Hoppe A, Müller H, Leithner R (2005b) CRFD studies for boilers fired with high ash containing and slagging lignites. Clean Air Int J Energy Clean Environ 6(2):137–155CrossRefGoogle Scholar
  58. Epple B, Ströhle J (2005f) Persönliche Kommunikation. Fachgebiet Energiesysteme und Energietechnik, TU DarmstadtGoogle Scholar
  59. Faeth GM (1983) Evaporation and combustion of sprays. Prog Energy Combust Sci 9(1/2):1–76CrossRefGoogle Scholar
  60. Fee DC, Wilson WI, Myles KM, Johnson I (1983) Fluidized-bed coal combustion: in-bed sorbent sulfation model. Chem Eng Sci 38(11):1917–1925CrossRefGoogle Scholar
  61. Fenimore CP (1970) Formation of Nitric Oxide in premixed hydrocarbon flames. In: 13th Symp. (Int.) on combustion, The Combustion Institute, pp 373–380Google Scholar
  62. Fenimore CP, Fraenkel HA (1980) Formation and interconversion of fixed-nitrogen species in laminar diffusion flames. In: 18th Symp. (Int.) on combustion, The Combustion Institute, pp 143–149Google Scholar
  63. Field MA, Gill DW, Morgan BB, Hawksley PGW (1967) Combustion of pulverized coal. BCURA, Leatherland UKGoogle Scholar
  64. Field MA (1969) Rate of Combustion of Size-Graded Fractions of Char from a Low-Rank Coal between 1200 K and 2000 K. Combust Flame 13:237–252Google Scholar
  65. Fiveland WA, Wessel, RA (1991) A model for predicting formation and reduction of NOx in three-dimensional furnaces burning pulverized fuel. J Inst Energy 64:41–54Google Scholar
  66. Fletcher TH (1989) Time-resolved temperature and mass loss measurements of a bituminous coal during devolatilization. Combust Flame 78(1):223–236CrossRefGoogle Scholar
  67. Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM (1990) Chemical percolation model for devolatilization, II. Temperature and heating rate effects on product yields. Energy Fuels 3: 54–60CrossRefGoogle Scholar
  68. Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM (1992) Chemical percolation model for devolatilization, III. Direct use of 13C NMR data to predict effects of coal type. Energy Fuels 6:414–431CrossRefGoogle Scholar
  69. Gavalas GR, Cheong PHK, Jain R (1981) Model of coal pyrolysis, 1. Qualitative development. Ind Eng Chem Fund 20(2):113–122CrossRefGoogle Scholar
  70. Geldart D (1986) Gas fluidization technology, 1st edn. Wiley, ChichesterGoogle Scholar
  71. Ghani MU, Wendt JOL (1990) Early evolution of coal nitrogen in opposed flow combustion configurations. In: 23th symp. (Int.) on combustion, The Combustion Institute, Pittsburgh, pp 1281–1288Google Scholar
  72. Glatzer A (1994) Feststoffverteilung und Wärmeübergang durch Strahlung in zirkulierenden Wirbelschichten. Progress report. VDI 309, VDI Verlag, DüsseldorfGoogle Scholar
  73. Görner K, Klasen T (1998) Numerische Berechnung und Optimierung der MVA Bonn. In: 19. Deutscher Flammentag “Verbrennung und Feuerungen”, VDI-Report Nr. 1492. Verein Deutscher Ingenieure, VDI-Gesellschaft Energietechnik, Dresden, Germany, 331–336Google Scholar
  74. Görres J (1997) Modellierung stark verdrallter Kohlenstaub-/Biomasseflammen mit der Methode der Finiten Elemente. Progress report VDI 377, VDI Verlag, DüsseldorfGoogle Scholar
  75. Gosman AD, Lockwood, FC (1973) Rept. HTS 173153. Technical Report, Imperial College, Mech. Eng. Dept.Google Scholar
  76. Gouldin FC (1974) Role of turbulent fluctuations in NO formations. Combust Sci Technol 9:17–23CrossRefGoogle Scholar
  77. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels 3:175–186CrossRefGoogle Scholar
  78. Gumz W (1953) Kurzes Handbuch der Brennstoff- und Feuerungstechnik. Springer, BerlinCrossRefGoogle Scholar
  79. Günther R (1974) Verbrennung und Feuerungen. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  80. Haider M (1994) Simulation von Dampferzeugern mit zirkulierender Wirbelschichtfeuerung. Progress report VDI 305, VDI Verlag, DüsseldorfGoogle Scholar
  81. Halder S, Saha RK (1990) On structural changes of lignite char during fluidised bed combustion. Can J Chem Eng 68:337–339CrossRefGoogle Scholar
  82. Hamer CA (1987) Evaluation of SO2 sorbents in a fluidized-bed combustion reactor. In: Mustonen JP (ed), Int. conference on fluidized bed combustion. ASME, pp 458–466Google Scholar
  83. Hämmerli H (1983) Grundlagen zur Berechnung von Müllfeuerungen, Müllverbrennung und Rauchgasreinigung. EF-Verlag für Energie und Umwelttechnik, S. 481 ffGoogle Scholar
  84. Hamor RJ, Smith IW, Tyler RJ (1973) Kinetics of combustion of pulverized brown coal char between 630 and 2200 K. Combust Flame 21:153–162CrossRefGoogle Scholar
  85. Hansen P, Dam-Johansen K, Østergaard K (1993) High-temperature reaction between sulphur dioxide and Limestone-V. – The effect of periodically changing oxidizing and reducing conditions. Chem Eng Sci 48(7):1325–1341CrossRefGoogle Scholar
  86. Hansen PFB (1991) Sulfur capture in fluidized bed combustors. Dissertation, Technical University of DenmarkGoogle Scholar
  87. Hardgrove (1968) Standard test method for grindability of coal by the hardgrove-machine method. D 409-51, American Society for Testing and MaterialsGoogle Scholar
  88. Haussmann GJ, Kruger CH (1990) Evolution and reaction of coal fuel nitrogen during rapid oxidative pyroysis and combustion. In: 23th symp. (int.) on combustion, The Combustion Institute, Pittsburgh, pp 1265–1271Google Scholar
  89. Hayhurst AN, Vince, IM (1980) Nitric oxide formation from N2 in flames: The importance of “Prompt” NO. Prog Energy Combust Sci 6:35–51CrossRefGoogle Scholar
  90. Heitmüller RJ (1987) Mathematische Simulation des dynamischen Verhaltens eines Zwangdurchlaufdampferzeugers beim Durchfahren des kritischen Punktes. Progress report VDI 199, VDI Verlag, DüsseldorfGoogle Scholar
  91. Hill KJ, Winter ERS (1956) Thermal dissoziation pressure of calcium carbonate. J Phys Chem 60:1361–1362CrossRefGoogle Scholar
  92. Hofmann R (2009) Experimental and numerical air-side performance evaluation of finned tube heat exchangers. Dissertation, Vienna University of TechnologyGoogle Scholar
  93. Hofmann R, Walter H, (2012a) Experimental and numerical investigation of the gas side heat transfer and pressure drop of finned tubes - Part 1: Experimental analysis. Trans ASME J Thermal Sci Eng Appl 4:041007-1–041007-11Google Scholar
  94. Hofmann R, Walter H, (2012b) Experimental and numerical investigation of the gas side heat transfer and pressure drop of finned tubes - Part 2: Numerical analysis. Trans ASME J Thermal Sci Eng Appl 4:041008-1–041008-11Google Scholar
  95. Hofmann R, Walter H, (2012c) Comparison between numerical and experimental gas side heat transfer and pressure drop of a tube bank with solid and segmented circular I-fins. In: Proceedings of the ASME 2012 11th biennial conference on engineering systems design and analysis. 2.–4. July, Nantes, France, pp 1–13, Paper-Nr. ESDA2012-82713Google Scholar
  96. Hottel HC, Mangelsdorf HG (1935) Heat transmission by radiation from nonluminous gases II. Experimental study of carbon dioxide and water vapor. Trans Am Inst Chem Eng 31:517–549Google Scholar
  97. Hottel HC, Egbert RB (1941) The radiation of furnace gases. Trans ASME 63:297–307Google Scholar
  98. Hottel HC, Egbert RB (1942) Radiant heat transfer from water vapour. Trans Am Inst Chem Eng 38:531–565Google Scholar
  99. Hottel HC, Sarofim AF (1967) Radiative transfer. McGraw-Hill Book Company, New York, Toronto, London, SydneyGoogle Scholar
  100. Howe NM, Shipman CW (1964) A tentative model for rates of combustion in confined turbulent flames. In: 10th symp. (int.) on combustion, The Combustion Institute. Pittsburgh, S. 1139–1149Google Scholar
  101. Jahns H, Schinkel W (1979) Berücksichtigung der Brennkammerverschmutzung bei der wärmetechnischen Berechnung rohbraunkohlestaubgefeuerter Dampferzeuger-Brennkammern. Energietechnik 29(12):464–469Google Scholar
  102. Janaf (1971) Janaf thermochemical tables. Nat. Stand. Ref. Data Sys. NSRDS-NBS 37Google Scholar
  103. Jones WP (1980) Models for turbulent flows with variable density and combustion. In: Kollmann W (ed) Prediction methods for turbulent flows. Hemisphere Pub. Corp., New York, pp 423–458Google Scholar
  104. Jones WP (1977) Workshop on PDF-methods for turbulent flows. Technical Report, TH AachenGoogle Scholar
  105. Jüntgen H, van Heek KH (1970) Reaktionsabläufe unter nicht-isothermen Bedingungen. Fortschritt der Chemischen Forschung 13(3/4):601–699CrossRefGoogle Scholar
  106. Kambara S, Takarada T, Yamamoto Y, Kato K (1993) Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis. Energy Fuels 7:1013–1020CrossRefGoogle Scholar
  107. Kellerhoff T (1999) Experimentelle Untersuchung der Kohlenstaubpyrolyse in einer Flashpyrolyseapparatur unter hohen Aufheizraten. Progress report VDI 420, VDI Verlag, DüsseldorfGoogle Scholar
  108. Klasen T, Görner K (1998) Simulation und Optimierung einer Müllverbrennungsanlage. Modellierung und Simulation von Dampferzeugern und Feuerungen, VDI-Report Nr. 1390. VDI-Gesellschaft Energietechnik, Braunschweig, Germany, S 227–242Google Scholar
  109. Klug M (1984) Simulation von Störfällen in Zwangsdurchlaufdampferzeugern mit einem physikalisch–mathematischen Modell. Progress report VDI 142, VDI Verlag, DüsseldorfGoogle Scholar
  110. Klutz HJ, Moser C, Block D (2006) WTA Feinkorntrocknung, Baustein für die Braunkohlekraftwerke der Zukunft, Vol 11. VGB PowerTechGoogle Scholar
  111. Kobayashi H, Howard JB, Sarofim AF (1976) Coal devolatilization at high temperatures. Proc Combust Inst 16:411–425CrossRefGoogle Scholar
  112. Kohlgrüber K (1986) Formeln zur Berechnung des Emissionsgrades von CO2- und H2O-Gasstrahlung bei Industrieöfen, Brennkammern und Wärmetauschern. Gas-Wärme Int 35(8):412–417Google Scholar
  113. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J Fluid Mech 13:331–333MathSciNetMATHCrossRefGoogle Scholar
  114. Koopman J (1985) Rechenverfahren für Gasturbinen-Brennkammern und ihre Möglichkeiten zur Beurteilung der NOx-Emissionen. 1. TECFLAM Seminar, S 51–62Google Scholar
  115. Kostowski E (1991) Analytische Bestimmung des Emissionsgrades von Abgasen. Gas-Wärme Int 40(12):529–534Google Scholar
  116. Kozlov GI (1958) On high-temperature oxidation of methane. In: 7th symp. (int.) on combustion, The Combustion Institute, Pittsburgh, S 142–149Google Scholar
  117. Krischer O, Kast W (1978) Die wissenschaftlichen Grundlagen der Trockungstechnik. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  118. Krohmer B, Epple B (1995) CFD basierte Optimierung von Müllverbrennungsanlagen. Technical Report, ALSTOM Power Boiler, Stuttgart, Interner BerichtGoogle Scholar
  119. Krüll F, Kremer H, Wirtz S (1998) Feuerraumsimulation einer Müllverbrennungsanlage bei gleichzeitiger Simulation der Verbrennung auf dem Rost. VDI-GET Fachtagung “Modellierung und Simulation von Dampferzeugern und Feuerungen”, VDI-Report Nr. 1390. VDI-Gesellschaft Energietechnik, Braunschweig, Germany: Verein Deutscher Ingenieure, S 199–214Google Scholar
  120. Krüll F (2001) Verfahren zur numerischen Simulation von Müllrostfeuerungen. Dissertation, Ruhr-Universtät BochumGoogle Scholar
  121. Kunii D, Levenspiel O (1990) Entrainment of solids from fluidized beds. I. Hold-up of solids in the freeboard. II. Operation of fast fluidized beds. Powder Technol 61:193–206CrossRefGoogle Scholar
  122. Lawrenz M, Klose E, Born M (1978) Vergleich der Berechnung von Brennkammerendtemperaturen an gasgefeuerten Dampferzeugern nach dem 0-dimensionalen Modell mit Messergebnissen. Energietechnik 28(1):21–25Google Scholar
  123. Lee SK, Jiang X, Keener TC, Khang SJ (1993a) Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Ind Eng Chem Res 32:2758–2766CrossRefGoogle Scholar
  124. Lee SK, Jiang X, Keener TC, Khang SJ (1993b) Attrition of lime sorbents during fluidization in a circulating fluidized bed absorber. Ind Eng Chem Res 32:2758–2766CrossRefGoogle Scholar
  125. Leikert K (1976) Stand der Erkenntnisse über Feuerraumschwingungen und Maßnahmen zu ihrer Beseitigung. VGB Kraftwerkstechnik 56(5):327–333Google Scholar
  126. Leithner R, Herrmann W, Trautmann G (1979) Rauchgasdruckschwankungen im Dampferzeuger bei Ausfall der Feuerung. VGB Kraftwerkstechnik 59(4)Google Scholar
  127. Leithner R, Herrmann W, Trautmann G (1980a) Flue gas pressure vibrations in steam generators when firing systems break down. CombustionGoogle Scholar
  128. Levenspiel O (1972) Chemical reaktion engineering. Wiley, New YorkGoogle Scholar
  129. Lisa K (1992) Sulphur capture under pressurized fluidised bed combustion conditions. Dissertation, Combustion Chemistry Research Group, Åbo Akademi UniversityGoogle Scholar
  130. Lockwood FC, Naguib, AS (1975) The prediction of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames. Combust Flame 24:109–124CrossRefGoogle Scholar
  131. Lockwood FC, Romo-Millares CA (1992) Mathematical modelling of fuel-NO emissions from PF burners. J Inst Energy 65:144–152Google Scholar
  132. Lockwood FC, Shah NG (1976) An improved model of radiation heat transfer in combustion chambers. In: ASME-AIChE heat transfer conference. St. Louis (USA)Google Scholar
  133. Lyngfelt A, Leckner B (1989) SO2 capture in fluidised-bed boilers: re-emission of SO2 due to reduction of CaSO4. Chem Eng Sci 44(2):207–213CrossRefGoogle Scholar
  134. Lyngfelt A, Leckner B (1992) Residence time distribution of sorbent particles in a circulating fluidized bed boiler. Powder Technol 70:285–292CrossRefGoogle Scholar
  135. Magnussen BF, Hjertager B (1976) On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. In: 16th symp. (int.) on combustion, The Combustion Institute Pittsburgh. Pittsburg, Pennsylvania, pp 719–729Google Scholar
  136. Magnussen BF (1981) On the structure of turbulence and a generalized eddy dissipation concept for chemical reactions in turbulent flow. In: 19th AIAA aerospace meeting. St.Louis, Missouri, pp 1–6Google Scholar
  137. Mayr WA, Jones PDF, Palmer RKW (1975) Vortex shedding from finned tubes. J Sound Vib 39:293–296CrossRefGoogle Scholar
  138. Mersmann A (1980) Thermische Verfahrenstechnik, Grundlagen und Methoden. Springer, New YorkCrossRefGoogle Scholar
  139. Missalla MA (2009) Berechnungsverfahren für hochbeladene Zyklone. Dissertation, Technical University of BraunschweigGoogle Scholar
  140. Mitchell RE, McLean WJ (1982) On the temperature and reaction rate of burning pulverized fuels. Proc Combust Inst 19:1113–1122CrossRefGoogle Scholar
  141. Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, Amsterdam, Boston, LondonMATHGoogle Scholar
  142. Müller H (1992) Numerische Berechnung dreidimensionaler turbulenter Strömungen in Dampferzeugern mit Wärmeübergang und chemischen Reaktionen am Beispiel des SNCR-Verfahrens und der Kohleverbrennung. Progress report VDI 268, VDI Verlag, DüsseldorfGoogle Scholar
  143. Murza S (1999) Numerische Simulation der Kohlenstaubfeuerung unter Verwendung eines parallelisierten Euler/Lagrange Verfahren. Dissertation, Ruhr-University of BochumGoogle Scholar
  144. Niksa S (1991) FLASHCHAIN theory for rapid coal devolatilization kinetics. 2. Impact on operating conditions. Energy Fuels 5(5):665–673CrossRefGoogle Scholar
  145. Niksa S (1994) FLASHCHAIN theory for rapid coal devolatilization kinetics. 5. Interpreting rates of devolatilization for various coal types and operating conditions. Energy Fuels 8(3):671–679CrossRefGoogle Scholar
  146. Niksa S (1995) FLASHCHAIN theory for rapid coal devolatilization kinetics. 6. Predicting the evolution of fuel nitrogen from various coals. Energy Fuels 9(3):467–478CrossRefGoogle Scholar
  147. Niksa S (1996) FLASHCHAIN theory for rapid coal devolatilization kinetics. 7. Predicting the release of oxygen species from various coals. Energy Fuels 10(1):173–187CrossRefGoogle Scholar
  148. Niksa S (2000) Predicting the rapid devolatilization of diverse forms of biomass with bio-flashchain. Proc Comb Inst 28:2727–2733CrossRefGoogle Scholar
  149. Nsakala N, Essenhigh RH, Walker Jr. PL (1977) Studies on coal reactivity: kinetics of lignite pyrolysis in nitrogen at 808oC. Combust Sci Technol 16:153–163CrossRefGoogle Scholar
  150. O’Neill EP, Keairns PD, Kittle WF (1977) Kinetic studies related to the use of limestone and dolomite as sulfur removal agents in fuel processing. In: Proceedings, Third Int. Symp. on FBC, pp 20–44Google Scholar
  151. Oppenberg R (1977) Feuerraumresonanzen bei erdgasgefeuerten Dampferzeugern - Erfahrungen und Maßnahmen. Gas-Wärme Int 26:55–63Google Scholar
  152. Peters AAF, Weber R (1997) Mathematical modeling of a 2.4 MW swirling pulverized coal flame. Combust Sci Technol 122:131–182CrossRefGoogle Scholar
  153. Pillai K (1981) The influence of coal type on devolatilization and combustion in fluidized beds. J Inst Energy 54(9):142–150Google Scholar
  154. Pohl JH, Sarofim AF (1976) Devolatilization and oxidation of coal nitrogen. In: 16th symp. (int.) on comb., The Combustion Institute Pittsburgh, S 491–501Google Scholar
  155. Rajan RR, Wen CY (1980) A comprehensive model for fluidized bed coal combustors. AIChE J 26:642–655CrossRefGoogle Scholar
  156. Ramachandran PA, Smith JM (1977) A single-pore model for gas-solid noncatalytic reactions. AIChE J 23(3):353–361CrossRefGoogle Scholar
  157. Reidelbach H, Algermissen J (1981) Berechnung der thermischen Zersetzung von Gasflammkohlen. Brennstoff-Wäme-Kraft 39(6):273–281Google Scholar
  158. Richardson JM, Howard HC, Smith RW (1952) The relation between sampling-tube measurements and concentration fluctuations in a turbulent gas jet. In: 4th sym. (int.) on combustion, The Combustion Institute, Pittsburgh, S 814–817Google Scholar
  159. Riemenschneider G (1988) Analyse der Anlagendynamik eines steinkohlebefeuerten Großdampferzeugers mit vorgeschalteter Gasturbine. Progress report VDI 228, VDI Verlag, DüsseldorfGoogle Scholar
  160. Rohse H (1995) Untersuchung der Vorgänge beim Übergang vom Umwälz- zum Zwangsdurchlaufbetrieb mit einer dynamischen Dampferzeugersimulation. Progress report VDI 327, VDI Verlag, DüsseldorfGoogle Scholar
  161. Rummer B (1999) Simulation der Trocknung, Pyrolyse und Vergasung großer Brennstoffpartikel. Dissertation, Technical University of GrazGoogle Scholar
  162. Schack A (1924) Über die Wärmestrahlung der Feuergase und ihre praktische Berechnung. Zeitschrift techn. Physik 5:267–278Google Scholar
  163. Schack A (1970) Berechnung der Strahlung von Wasserdampf und Kohlendioxid. Chemie Ingenieur Technik 42(2):53–58CrossRefGoogle Scholar
  164. Schack A (1971) Zur Berechnung der Wasserdampfstrahlung. Chemie Ingenieur Technik 43(21):1151–1153CrossRefGoogle Scholar
  165. Schmidt E (1932) Messung der Gesamtstrahlung des Wasserdampfes bei Temperaturen bis 1000 0C. Forschung Ing.-Wesen 3(2):57–70CrossRefGoogle Scholar
  166. Schmidt E, Eckert E (1937) Die Wärmestrahlung von Wasserdampf in Mischung mit nichtstrahlenden Gasen. Forschung Ing.-Wesen 8(3):87–90CrossRefGoogle Scholar
  167. Schnell U (1990) Berechnung der Stickoxidemission von Kohlestaubfeuerungen. Progress report VDI 250, VDI Verlag, DüsseldorfGoogle Scholar
  168. Schobesberger P (1989) Ein Modell zur Berechnung von Wärme- und Stoffaustauschvorgängen in Dampferzeugerfeuerungen. Progress report VDI 230, VDI Verlag, DüsseldorfGoogle Scholar
  169. Schuhmacher A, Waldman H (1972) Wärme- und Strömungstechnik im Dampferzeugerbau - Grundlagen und Berechnungsverfahren. Vulkan Verlag, EssenGoogle Scholar
  170. Serio MA, Chen Y, Charpenay S, Jensen A, Wojtowicz MA (1998) Modeling biomass pyrolysis kinetics. In: 20th symp. (int.) on combustion, The Combustion Institute, Pittsburgh, S 1327–1334Google Scholar
  171. Serio MA, Hamblen DG, Markham JR, Solomon PR (1987) Kinetics of volatile evolution in coal pyrolysis: experiment and theory. Energy Fuels 1:138–152CrossRefGoogle Scholar
  172. Serio MA, Solomon PR, Yu ZZ (1989) An improved general model of coal devolatilization. In: Int. Conference on Coal Science. Tokyo, Japan, pp 209–212Google Scholar
  173. Siegel R, Howell JR, Lohrengel J (1991a) Wärmeübertragung durch Strahlung, Vol 2, Strahlungsaustausch zwischen Oberflächen und in Umhüllungen der Wärme und Stoffübertragung. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  174. Siegel R, Howell JR, Lohrengel J (1991b) Wärmeübertragung durch Strahlung, Vol 3, Strahlungsübergang in absorbierenden, emitierenden und streuenden Medien der Wärme und Stoffübertragung. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  175. Siegel R, Howell, JR (1992) Thermal radiation heat transfer, 3rd edn. Hemisphere Publishing Corp., Washington, Philadelphia, LondonGoogle Scholar
  176. Smith PJ, Fletcher TH, Smoot LD (1980) Model for pulverized coal-fired reactors. In: 18th symp. (int.) on combustion, The Combustion Institute, Pittsburgh, S 1285–1293Google Scholar
  177. Smoot LD, Hill SC, Smith PJ (1985a) NOx prediction for practical pulverized coal reactors. In: Joint symposium on stationary combustion NOx controlGoogle Scholar
  178. Smoot LD, Smith PJ (1985b) Coal combustion and gasification. Plenum Press, New YorkCrossRefGoogle Scholar
  179. Solomon PR, Colket MB (1978) Coal devolatilization. In: 17th symp. (int.) on combustion, The Combustion Institute, S 131–141Google Scholar
  180. Solomon PF, Serio MA, Carangelo RM, Markham JR (1986) Very rapid coal pyrolysis. Fuel 65(2):182–194CrossRefGoogle Scholar
  181. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV (1988) General model coal devolatilization. Energy Fuels 2:405–422CrossRefGoogle Scholar
  182. Solomon P, Serio R, Suuberg EM (1992) Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog Energy Combust Sci 18:133–220CrossRefGoogle Scholar
  183. Solomon PF, Fletcher TH, Pugmire RJ (1993) Progress in coal pyrolysis. Fuel 72(5):587–597CrossRefGoogle Scholar
  184. Spalding DB (1970) Mixing and chemical reaction in stead confined turbulent flames. In: 13th symp. (int.) on combustion, The Combustion Institute Pittsburgh, S 649–657Google Scholar
  185. Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. J Chem Eng Sci 26:95–107MathSciNetCrossRefGoogle Scholar
  186. Spalding DB (1982) The ‘Shadow’ method of particle-size calculation in two-phase combustion. In: 19th symp. (int.) on combustion, The Combustion Institute, PittsburghGoogle Scholar
  187. Tanner H (1994) Lokale Strömungsmechanik in hochexpandierten zirkulierenden Gas/Feststoff-Wirbelschichten. Dissertation, ETH, ZurichGoogle Scholar
  188. Thomas KM (1997) The release of nitrogen oxides during char combustion. Fuel 76:457–473CrossRefGoogle Scholar
  189. Traustel S (1955) Besprechung des Konakow-Modells; Nachr. Akd. Wiss. UdSSR Abt. techn. Wiss. (1952) H. 3 S. 367/73 DK 621.18.016. Brennstoff-Wärme-Kraft, Nr. 3Google Scholar
  190. Truelove JS, Jamaluddin AS (1986) Models for rapid devolatilization of pulverized coal. Combust Flame 64(3):369–372CrossRefGoogle Scholar
  191. Tsuji Y, Kawagucchi T, Tanaka T (1993) Discrete particle simulation of a fluidized bed. Powder Technol 77:79CrossRefGoogle Scholar
  192. Visona SP, Stanmore BR (1996) 3-D modelling of NOx formation in a 275 MW utility boiler. J Inst Energy 69:68–79Google Scholar
  193. Visser BM (1991) Mathematical modelling of swirling pulverised coal flames. Dissertation, Technical University of Delft (The Netherlands)Google Scholar
  194. Vonderbank RS, Leithner R, Schiewer S, Hardow B (1993) Modellierung paralleler Kalzinierung und Sulfatierung bei der SO2-Einbindung durch das Trocken-Additiv-Verfahren. Brennstoff-Wärme-Kraft 45:443–450Google Scholar
  195. Vortmeyer D, Kabelac S (2006a) Gasstrahlung: Strahlung von Gasgemischen. In: VDI–Wärmeatlas – Berechnungsblätter für den Wärmeübergang, 10th edn., S Kc1–Kc11. VDI-Verlag GmbH., DüsseldorfGoogle Scholar
  196. Vortmeyer D, Kabelac S (2006b) Einstrahlungzahlen. In: VDI–Wärmeatlas – Berechnungsblätter für den Wärmeübergang, 10th edn., S Kb1–Kb10. VDI-Verlag GmbH., DüsseldorfGoogle Scholar
  197. Walter H (2001) Modellbildung und numerische Simulation von Naturumlaufdampferzeugern. Progress report VDI 457, VDI Verlag, DüsseldorfGoogle Scholar
  198. Wang J (1993) Eindimensionale Simulation der zirkulierenden Wirbelschichtfeuerungen. Progress report VDI 289, VDI Verlag, DüsseldorfGoogle Scholar
  199. Warnatz J (1979) The structure of freely propagating and burner stabilized flames in the H2-CO-O2 system. Ber Bunsenges Phys Chem 83:950–957CrossRefGoogle Scholar
  200. Wendt JOL (1980) Fundamental coal combustion mechanisms and pollutant formation in furnaces. Prog Energy Combust Sci 6:201–222CrossRefGoogle Scholar
  201. Williams A, Pourkashanian M, Bysh P, Norman J (1994) Modelling of coal combustion in Low-NOx PF flames. Fuel 73:1006–1018CrossRefGoogle Scholar
  202. Wochinz R (1992) Ein Vergleich zweier Berechnungsverfahren zur Auslegung von Dampferzeuger-Feuerräumen. Master thesis, Vienna University of TechnologyGoogle Scholar
  203. Wu S, Alliston M, Edvardsson C, Probst S (1993) Size reduction, residence time and utilization of sorbent particles in a circulating fluidized bed combustor. In: Avidan AA (ed) Proceedings, CFB IV, pp 665–671Google Scholar
  204. Zeldovich J (1946) The oxidation of nitrogen in combustion and explosions. Acta Physiochimica URSS 21, Nr. 4:577–628Google Scholar
  205. Zelkowski J (1986) Kohleverbrennung. VGB-Kraftwerkstechnik GmbH., EssenGoogle Scholar
  206. Zhang JQ, Becker HA, Code RK (1990) Devolatilization and combustion of large coal particles in a fluidized bed. Can J Chem Eng 68:1010–1017CrossRefGoogle Scholar
  207. Zhao Y, Serio MA, Bassilakis R, Solomon PR (1994) A method of predicting coal devolatilization behaviour based on the elemental composition 1994. Proc Combust Inst 25:553–560CrossRefGoogle Scholar
  208. Zhao Y, Serio MA, Solomon PR (1996) A general model for devolatilization of large coal particles. In: 26th symp. (int.) on combustion, The Combustion Institute, Pittsburgh, pp 3145–3151Google Scholar
  209. Zinser W (1985) Zur Entwicklung mathematischer Flammenmodelle für die Verfeuerung technischer Brennstoffe. Progress report VDI 171, VDI Verlag, DüsseldorfGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • B. Epple
    • 1
  • R. Leithner
    • 2
  • H. Müller
    • 2
  • W. Linzer
    • 3
  • H. Walter
    • 3
  • A. Werner
    • 3
  1. 1.Department of Energy Systems and TechnologyTechnical University of DarmstadtDarmstadtGermany
  2. 2.Institute of Energy and Process Systems EngineeringTechnical University of BraunschweigBraunschweigGermany
  3. 3.Institute for Energy Systems and ThermodynamicsVienna University of TechnologyViennaAustria

Personalised recommendations