Skip to main content

Abstract

As already noted in Sect. 1.1 (Fig. 1.2) and Chap. 2, the balance equations for mass, momentum, energy, substances, and phases and the constitutive equations or models for heat and mass transfer, substance transformation and phase transition, turbulence, and physical characteristics form a coupled system of non-linear partial differential equations (PDE). The complexity (number of equations) depends on the problem to be modeled and the expected detailing of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Whether or not a flow can be described as compressible or incompressible does not depend on the flow’s density variability alone. Density variations that can be attributed to a strong local acceleration up to Mach numbers greater than approximately 0.4 can be regarded as being criteria for the compressibility of a flow. If the density changes are caused by other factors, such as the heat released in chemical reactions, the flow may be quite incompressible despite strong density variations.

  2. 2.

    The * denotes the individual estimated or inaccurate variables of velocity w and pressure p, respectively

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Alobaid F, Baraki N, Ströhle J, Epple B (2013) Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv Powder Technol 24:403–415

    Article  Google Scholar 

  • Alobaid F, Ströhle J, Epple B (2010) Numerical simulation of reactive fluidized beds for conversion of the biomass with Discrete Element Method. Workshop “Modellierung von Biomassevergasung und -verbrennung mit Hilfe der numerischen Strömungsmechanik”. Leipzig, Germany

    Google Scholar 

  • Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM Verlag, Philadelphia

    Book  MATH  Google Scholar 

  • Aziz K, Hellums JD (1967) Numerical solutions of the three-dimensional equation of motion for laminar natural convection. Phys Fluid 10:314

    Article  MATH  Google Scholar 

  • Babovsky H (1989) Convergence proof for Nanbu’s Boltzmann simulation scheme. Eur J Mech B/Fluids 1:41–45

    MathSciNet  MATH  Google Scholar 

  • Babu BV, Chaurasia AS (2004) Dominant design variables in pyrolysis of biomass particles of different geometries in thermally thick regime. Chem Eng Sci 59:611–622

    Article  Google Scholar 

  • Baraff D (1995) Interactive simulation of solid rigid bodies. IEEE Comput Graph Appl 15:63–75

    Article  Google Scholar 

  • Becker J, Haake W, Nabert R, Dreyer HJ (1977) Numerische Mathematik für Ingenieure. B.G. Teubner-Verlag, Stuttgart

    MATH  Google Scholar 

  • Beer FP, Johnson ER (1976) Mechanics for engineers- statics and dynamics. McGraw-Hill Verlag, New York

    Google Scholar 

  • Beetstra R, Van der Hoef MA, Kuipers JAM (2007) Drag force from lattice Boltzmann simulations of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J 53:489–501

    Article  MATH  Google Scholar 

  • Benyahia S, Syamlal M, O’Brien TJ (2006) Extension of Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction. Powder Technol 162:166–174

    Article  Google Scholar 

  • Bird BR, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  • Bird GA (1976) Molecular gas dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Bischof C, Roh L (1997) ADIC: An extensible automatic differentiation tool for ANSI-C. Mathematics and Computer Science Division, Argonne National Laboratory, IL USA

    Google Scholar 

  • Blasi CD (1998) Physico-chemical processes occurring inside a degrading two dimensional anisotropic porous medium. Int J Heat Mass Transf 41:4139–4150

    Article  MATH  Google Scholar 

  • Brenan KE, Campbell SL, Petzold LR (1995) Numerical solution of initial-value problems in differential-algebraic equations. Siam Verlag, Philadelphia

    Book  MATH  Google Scholar 

  • Brilliantov NV, Spahn F, Hertzsch J, Poeschel T (1996) Model for collisions in granular gases. Phys Rev 5:5382–5392

    Google Scholar 

  • Brilliantov NV, Poschel T (1998) Rolling friction of a viscous sphere on a hard plane. Europhy Lett 42:511–516

    Article  Google Scholar 

  • Bronstein I, Semendjajew K, Musiol G, Mühlig H (2000) Taschenbuch der Mathematik. Verlag Harri Deutsch

    MATH  Google Scholar 

  • Campbell CS, Brennen CE (1985) Computer simulations of granular shear flow. J Fluid Mech 151:167–188

    Article  Google Scholar 

  • Cebeci T (2003) Turbulence models and their application: efficient numerical methods with computer programs. Springer, Berlin, New York

    Google Scholar 

  • Chapman S, Cowling T (1970) The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chiesa M, Mathiesen V, Melheim J, Halvorsen B (2005) Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed. Comput Chem Eng 29:291–304

    Article  Google Scholar 

  • Chuan CH, Schreiber, WC (1990) The development of a vectorized computer code for solving three-dimensional, transient heat convection problems. In: Wrobel LC, Brebbia CA, Nowak AJ (eds) Advanced computational methods in heat transfer: natural and forced convection, Vol 2. Computational Mechanics Publications, Southampton Boston, pp 147–158

    Google Scholar 

  • Cohen JD, Lin MC, Manocha D, Ponamgi M (1995) 9.–12. April. I-collide: An interactive and exact collision detection system for large-scale environments. In: Proceeding of ACM interactive 3D graphics conference, Monterey, CA, USA, pp 189–196

    Google Scholar 

  • Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in-cell-method for gas-droplet flow. J Fluids Eng 99:325–332

    Article  Google Scholar 

  • Crowe CT (1982) Review: Numerical models for dilute gas-particle flows. J Fluids Eng 104:297–303

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1): 47–65

    Article  Google Scholar 

  • Deen NG, Van Sint Annaland M, Van der Hoef MA, Kuipers JAM (2006) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62:28–44

    Article  Google Scholar 

  • Dennis SCR, Singh SN, Ingham DB (1980) The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J Fluid Mech 101:257–279

    Article  MATH  Google Scholar 

  • Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59:525–541

    Article  Google Scholar 

  • Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329

    Article  Google Scholar 

  • Elghobashi S (2006) An updated classification map of particle-laden turbulent flows. Springer, The Netherlands

    Book  Google Scholar 

  • Epple B, Stroehle J 2008. “CO2 capture based on chemical and carbonate looping”. VGB PowerTech 88(11): 85–89

    Google Scholar 

  • Ergun S (1952) Fluid flow through packed columns. Chem Eng Process 48:89–94

    Google Scholar 

  • Faires J, Burden R (1995) Numerische Methoden.: Näherungsverfahren und ihre praktische Anwendung. Spektrum Akademischer Verlag, Heidelberg, Berlin

    Google Scholar 

  • Fan LS, Zhu C (1998) Principles of gas-solid flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Fazzolari A, Gauger NR, Brezillon J (2007) Efficient aerodynamic shape optimization in MDO context. J Comput Appl Math 203:548–560

    Article  MathSciNet  MATH  Google Scholar 

  • Feng YQ, Yu AB (2004a) Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind Eng Chem Res 43:8378–8390

    Article  Google Scholar 

  • Feng YQ, Yu AB (2004b) Comments on “Discrete particle-continuumfluid modelling of gas-solid fluidised beds” by Kafui (2002). Chem Eng Sci 59:719–722

    Article  Google Scholar 

  • Ferziger JH, Perić M (1999) Computational methods for fluid dynamic, 2nd edn. Springer, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Ferziger JH, Perić M (2005) Computational methods for fluid dynamic, 3rd edn. Springer, Berlin, Heidelberg, New York

    MATH  Google Scholar 

  • Fisher RA (1926) On the capillary forces in an ideal soil, correction of formulate given by W.B. Haines. J Agric Sci 16:492–505

    Article  Google Scholar 

  • Foscolo PU, Gibilaro LG, Waldram SP (1982) A unified model for particulate expansion of fluidised beds and flow in fixed porous media. Chem Eng Sci 38:1251–1260

    Article  Google Scholar 

  • Garside J, Al-Dibouni MR (1977) Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems. Ind Eng Chem Process Des Dev 16:206–214

    Article  Google Scholar 

  • Gera D, Mathur MP, Freeman MC, Robinson A (2002) Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy Fuels 16:1523–1532

    Article  Google Scholar 

  • Gerhartz W (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley-Verlag, New York

    Google Scholar 

  • Ghia U, Ghia KN, Shin CT (1982) High-Re solution for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411

    Article  MATH  Google Scholar 

  • Gidaspow D (1994) Multiphase flow and fluidization. Academic Press, Boston, San Diego, New York

    Google Scholar 

  • Goldschmidt MJV, Beetstra R, Kuipers JAM (2004) Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models. Powder Technol 142:23–47

    Article  Google Scholar 

  • Görner K (1991) Technische Verbrennungssysteme: Grundlagen, Modellbildung, Simulation. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Götz S (2006) Gekoppelte CFD/DEM-Simulation blasenbildender Wirbelschichten. Dissertation, Technical University of Dortmund

    Google Scholar 

  • Griewank A (2000) Evaluating derivatives: principles and techniques of algorithmic differentiation. Front Appl Math SIAM Verlag

    MATH  Google Scholar 

  • Grüner C (2004) Kopplung des Einzelpartikel- und des Zwei-Kontinua-Verfahrens für die Simulation von Gas-Feststoff-Strömungen. Dissertation, Technical University of Dortmund

    Google Scholar 

  • Han T, Levy A, Kalman H (2003) DEM simulation for attrition of salt during dilute-phase pneumatic conveying. Powder Technol 129:92–100

    Article  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluid 8(12):2182–2189

    Article  MathSciNet  MATH  Google Scholar 

  • Hertz H (1982) Über die Berührung fester elastischer Körper. J für die reine und angewandte Math 92:156–171

    MATH  Google Scholar 

  • Hill KJ, Koch DL, Ladd JC (2001) Moderate-Reynolds-numbers flows in ordered and random arrays of spheres. J Fluid Mech 448:243–278

    MathSciNet  MATH  Google Scholar 

  • Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computating method for all flow speeds. J Comput Phys 14:227–253

    Article  MATH  Google Scholar 

  • Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill Press, New York

    MATH  Google Scholar 

  • Hoffmann KA, Chiang StT (1995) Computational fluid dynamics for engineers, 3rd edn, Vol 1. Engineering Education SystemsTM, Wichita Kansas

    Google Scholar 

  • Hoffmann KA, Chiang StT, Siddiqui Sh, Papadakis M (1996) Fundamental equations of fluid mechanics, Vol 1. Engineering Education SystemsTM, Wichita Kansas

    Google Scholar 

  • Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A Hard-Sphere approach. Chem Eng Sci 51:99–118

    Article  Google Scholar 

  • Hoomans B, Kuipers JAM, van Swaaij W (2000) Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds. Powder Technol 109:41–48

    Article  Google Scholar 

  • Hotta K, Takeda K, Iinoya K (1974) The capillary binding force of a liquid bridge. Powder Technol 10:231–242

    Article  Google Scholar 

  • Hu HH (1996) Direct simulation of flows of solid-liquid mixtures. Int J Multiphase Flow 22:335–352

    Article  MATH  Google Scholar 

  • Hußmann B (2008) Modellierung und numerische Simulation der zweiphasigen Strömungs- und Verbrennungsvorgänge in einem Staustrahltriebwerk mit Bor als Festtreibstoff. Dissertation, University of the German armed forces Munich

    Google Scholar 

  • Issa RI (1985) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62:40–65

    Article  MathSciNet  MATH  Google Scholar 

  • Issa RI, Gosman AD, Watkins AP (1986) The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J Comput Phys 62:66–82

    Article  MathSciNet  MATH  Google Scholar 

  • Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear volume development by DEM. J Eng Mech 124:285–292

    Article  Google Scholar 

  • Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109:192–205

    Article  Google Scholar 

  • Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer Heat Transf 10:209–228

    Article  MATH  Google Scholar 

  • Jekerle J (2001) Berechnung eines natürlichen Wasserumlaufsystems mit Hilfe der Lagrangeschen Strömungsgleichungen. Fortschr.-Ber. VDI 406, VDI Verlag, Düsseldorf

    Google Scholar 

  • Kafui KD, Thornton C, Adams MJ (2002) Discrete particle-continuum fluid modelling of gas-solid fluidised beds. Chem Eng Sci 57:2395–2410

    Article  Google Scholar 

  • Kafui KD, Thornton C, Adams MJ (2004) Reply to comments by Feng and Yu on “Discrete particle-continuum fluid modeling of gas-solid fluidized beds”. Chem Eng Sci 59:723–725

    Article  Google Scholar 

  • Kaneko Y, Shiojima T, Horio M (1999) DEM simulation of fluidized beds for gas-phase olefin polymerization. Chem Eng Sci 54:5809–5821

    Article  Google Scholar 

  • Kanther W (2003) Gas-Feststoff-Strömungen in komplexen Geometrien. Dissertation, Technical University of Dortmund.

    Google Scholar 

  • Karki KC, Patankar, SV (1989) Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J 27(9):1167–1174

    Article  Google Scholar 

  • Kharaz AH, Gorham DA, Salman AD (2001) An experimental study of the elastic rebound of spheres. Powder Technol 120:281–291

    Article  Google Scholar 

  • Knight PC, Seville JPK Kamiya H, Horio M (1999) Modelling of sintering of iron particles in high-temperature gas fluidisation. Chem Eng Sci 55:4783–4787

    Article  Google Scholar 

  • Kolev NI (1986) Transiente Zweiphasenströmung. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V (2006) Review and extension of normal force models for the discrete element method. Powder Technol 171:157–173

    Article  Google Scholar 

  • Kunii D, Levenspiel O (1969) Fluidization engineering. Wiley Verlag, New York

    Google Scholar 

  • Kuwabara G, Kono K (1987) Restitution coefficient in collision between two spheres. Jpn J Appl Phys 26:1230–1233

    Article  Google Scholar 

  • Kuwagi K, Mikami T, und Horio M (1999) Numerical simulation of metallic solid bridging particles in a fluidized bed at high temperature. Powder Technol 109:27–40

    Article  Google Scholar 

  • Latimer BR, Polard A (1985) Comparison of pressure-velocity coupling solution algorithms. Numer Heat Transf 8:635–652

    Article  Google Scholar 

  • Lee SL, Tzong, RY (1992) Artificial pressure for pressure-linked equation. Int J Heat Mass Transf 35(10):2705–2716

    Article  MATH  Google Scholar 

  • Lee J, Herrmann HJ (1993) Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J Phys 26:373–383

    Google Scholar 

  • Leva M (1959) Fluidization. McGraw-Hill Verlag, New York

    Google Scholar 

  • Li J, Kuipers JAM (2003) Gas-particle interactions in dense gas-fluidized beds. Chem Eng Sci 58:711–718

    Article  Google Scholar 

  • Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161:138–147

    Article  Google Scholar 

  • Limtrakul S, Chalermwattanatai A, Unggurawirote K, Tsuji Y, Kawaguchi T, Tanthapanichakoon W (2003) Discrete particle simulation of solids motion in a gas-solid fluidized bed. Chem Eng Sci 58:915–921

    Article  Google Scholar 

  • Link J, Cuypers LA, Deen NG, Kuipers JAM (2005) Flow regimes in a spout-fluid bed: A combined experimental and simulation study. Chem Eng Sci 60:3425–3442

    Article  Google Scholar 

  • Link J (2006) Development and validation of discrete particle model of a spout-fluid bed granulator. Dissertation, University of Twente.

    Google Scholar 

  • Lomic S (1998) Entwicklung eines Regelalgorithmus zur Steuerung der Relaxationsfaktoren des Finiten-Volumen-Verfahrens SIMPLE. Master thesis, Vienna University of Technology

    Google Scholar 

  • Lyness JN (1967) Numerical algorithms based on the theory of complex variables. In: Proceedings ACM 22nd national conference. Washington DC, USA, pp 124–134

    Google Scholar 

  • Majumdar S (1988) Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grid. Numer Heat Transf 13:125–132

    Article  Google Scholar 

  • Marcus RD, Leung LS, Klinzing GE, Rizk F (1990) Pneumatic conveying of solids. Chapman & Hall, New York

    Book  Google Scholar 

  • Martins JRRA, Kroo IM, Alonso JJ (2000) An automated method for sensitivity analysis using complex variables. In: Proceedings of the 38th aerospace sciences meeting. AIAA paper 2000-0689, Reno, USA

    Google Scholar 

  • Martins JRRA, Alonso JJ, Reuther J (2001a) Aero-structural wing design optimization using high-fidelity sensitivity analysis. In: Proceedings of the CEAS conference on multidisciplinary aircraft design and optimization. Cologne, Germany

    Google Scholar 

  • Martins JRRA, Sturdza P, Alonso JJ (2001b) A connection between the complex-step derivative approximation and algorithmic differentiation. In: AIAA 39th aerospace sciences meeting and exhibit. Paper no. AIAA-2001-0921, Reno, USA

    Google Scholar 

  • Maw N, Barber JR, Fawcett JN (1976) Oblique impact of elastic spheres. Wear 38:101–114

    Article  Google Scholar 

  • Mikami T, Kamiya H, Horio M (1996) The mechanism of defluidization of iron particles in a fluidized bed. Powder Technol 89:231–238

    Article  Google Scholar 

  • Mikami T, Kamiya H, Horio M (1998) Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci 53:1927–1940

    Article  Google Scholar 

  • Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–344

    MathSciNet  MATH  Google Scholar 

  • Mönnigmann M (2003) Constructive nonlinear dynamics for the design of chemical engineering processes. Dissertation, RWTH Aachen

    Google Scholar 

  • Muguruma Y, Tanaka T, Kawatake S, Tsuji Y (2000) Numerical simulation of particulate flow with liquid bridge between particles (simulation of a centrifugal tumbling granulator). Powder Technol 109:49–57

    Article  Google Scholar 

  • Nanbu K (1980) Direct simulation scheme derived from the Boltzmann equation I. Monocomponent gases. J Phys Soc Jpn 49:2042–2049

    Article  Google Scholar 

  • Noll B, Bauer HJ, Wittig S (1989) Gesichtspunkte der numerischen Simulation turbulenter Strömungen in brennkammertypischen Konfigurationen. Zeitschrift für Flugwissenschaften und Weltraumforschung 13:178–187

    Google Scholar 

  • Noll B (1993) Numerische Strömungsmechanik: Grundlagen, 1st edn. Springer, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Norberts P (2000) Turbulent combustion. Cambridge monographs on mechanics, United Kingdom

    Google Scholar 

  • Oberlack M, Khujadze G, Guenther S, Weller T, Frewer M, Peinke J, Barth S (2007) Progress in turbulence II. Springer, Berlin, New York

    Book  MATH  Google Scholar 

  • Oertel H, Laurien E (1995) Numerische Strömungsmechanik. Springer, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Oesterle B, Petitjean (1993) A simulation of particle-to-particle interactions in gas-solid-flows. Int J Multiphase Flow 19:199–211

    Google Scholar 

  • O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Dissertation, Princeton University

    Google Scholar 

  • Paisley MF (1997) Multigrid computation of stratified flow over two-dimensional obstacles. J Comput Phys 136:411–424

    Article  MATH  Google Scholar 

  • Papula L (1994) Mathematik für Ingenieure und Naturwissenschaftler. Vieweg Verlag, Wien Braunschweig

    MATH  Google Scholar 

  • Paschedag AR (2004) CFD in der Verfahrenstechnik: Allgemeine Grundlagen und mehrphasige Anwendungen. Wiley-Verlag

    Book  Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publ. Corp., Washington, New York, London

    MATH  Google Scholar 

  • Patankar SV (1988) Recent developments in computational heat transfer. Trans ASME Ser C J Heat Transf 110:1037–1045

    Article  Google Scholar 

  • Perić M, Kessler R, Scheuerer G (1988) Comparison of finite-volume numerical methods with staggered and colocated grids. Comput Fluids 16(4):389–403

    Article  MATH  Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN, 2th edn. Cambridge University Press, New York

    MATH  Google Scholar 

  • Rall R (1981) Automatic differentiation: techniques and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Rhie CM, Chow WL (1983) A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    Article  MATH  Google Scholar 

  • Schäfer M (1999) Numerik im Maschinenbau. Springer, New York

    Book  MATH  Google Scholar 

  • Schiller L, Naumann A (1933) Über die grundlegende Berechnung bei der Schwerkraftaufbereitung. Zeitschrift Verein Deutscher Ingenieure 44:318–320

    Google Scholar 

  • Schiller A (1999) Optimierung der Simulation von Kohlenstaubfeuerungen. Progress report VDI 416, VDI Verlag, Düsseldorf

    Google Scholar 

  • Schinner A (1999) Fast algorithms for the simulation of polygonal particles. Granul Matter 2:35–43

    Article  Google Scholar 

  • Schubert H (1979) Grundlagen des Agglomerierens. Chemie Ingenieur Technik 51:266–277

    Article  Google Scholar 

  • Schüller BK (1999) Über die Berechnung von Nußelt-Zahlen bei komplexen Geometrien. Reports from te Thermodynamic, Shaker Verlag

    Google Scholar 

  • Sedgewick (1992) Algorithmen. Addison-Wesley Verlag, Menlo Park

    Google Scholar 

  • Seville JPK, Willett CD, Knight PC (2000) Interparticle forces in fluidisation: a review. Powder Technol 113:261–268

    Article  Google Scholar 

  • Shih TM, Ren AL (1984) Primitive-variable formulations using nonstaggered grids. Numer Heat Transf 7:413–428

    Article  MATH  Google Scholar 

  • Shi D, McCarthy JJ (2007) Numerical simulation of liquid transfer between particles. Powder Technol 184:64–75

    Article  Google Scholar 

  • Smith GD (1978) Numerical solution of partial differential equations: finite difference methods. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Sommerfeld M (1996) Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens. Shaker Verlag, Aachen

    Google Scholar 

  • Sommerfeld M (2002) Kinetic simulations for analysing the wall collision process of non-spherical particles. In: Proceedings of FEDSM02, ASME fluids engineering division summer meeting. Montreal, Canada

    Google Scholar 

  • Soo SL (1989) Particulates and continuum: multiphase fluid dynamics. Hemisphere Press, New York

    MATH  Google Scholar 

  • Spalding DB. (1972a) A novel finite-difference formulation for differential expressions involving both first and second derivatives. Int J Numer Methods Eng 4(4):551–559

    Article  Google Scholar 

  • Specht B (2000) Modellierung von beheizten, laminaren und turbulenten Strömungen in Kanälen beliebigen Querschnitts. Dissertation, Technical University of Braunschweig

    Google Scholar 

  • Steinrück H (2000) Grundlagen der numerischen Strömungsmechanik. Institut für Strömungslehre und Wärmeübertragung, Vienna University of Technology. Lecture notes

    Google Scholar 

  • Stiefel E (1970) Einführung in die numerische Mathematik. B. G. Teubner Verlag, Stuttgart

    MATH  Google Scholar 

  • Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid. Academic Press, San Diego, San Francisco, New York

    Google Scholar 

  • Tsuji Y, Tanaka T, Ishida T (1991) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250

    Article  Google Scholar 

  • Tsuji Y, Kawagucchi T, Tanaka T (1993) Discrete particle simulation of a fluidized bed. Powder Technol 77:79

    Article  Google Scholar 

  • Tsuji T, Yabumoto K, Tanaka T (2008) Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation. Powder Technol 184:132–140

    Article  Google Scholar 

  • Van der Hoef MA, Ye M, Van Sint Annaland M, Andrews IV, Andrews AT, Sundaresan S, Kuipers JAM (2006) Multi-scale modeling of gas fluidized beds. Adv Chem Eng 31:65–149

    Article  Google Scholar 

  • Van Doormaal JP, Raithby GD (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transf 7:147–163

    MATH  Google Scholar 

  • van Kan JJ, Segal A (1995) Numerik Partieller Differentialgleichungen für Ingenieure. B. G. Teubner Verlag, Stuttgart

    Book  MATH  Google Scholar 

  • Vesely FJ (2005) Introduction to computational physics. Course material Academic year 2005/06. Vienna University of Technology

    Google Scholar 

  • Walhorn E (2002) Ein simultanes Berechnungsverfahren für Fluidstruktur-Wechselwirkungen mit finiten Raum-Zeit-Elementen. Technical Report 2002-95, Institut für Statik, TU Braunschweig

    Google Scholar 

  • Walter H, Weichselbraun A (2002b) Ein Vergleich unterschiedlicher Finite-Volumen-Verfahren zur dynamischen Simulation beheizter Rohrnetzwerke. Progress report VDI 477, VDI Verlag, Düsseldorf

    Google Scholar 

  • Walter H, Weichselbraun A (2003b) Comparison of four finite-volume-algorithms for the dynamic simulation of natural circulation steam generators. In: Troch I, Breitenecker F (eds) Proceedings of the 4th IMACS symposium on mathematical modelling, Vol 2 of ARGESIM Report no. 24. ARGE SIMULATION, Vienna, pp 531–540

    Google Scholar 

  • Walter H (2007a) Dynamic simulation of natural circulation steam generators with the use of finite-volume-algorithms – A comparison of four algorithms. Simul Model Pract Theory 15:565–588

    Article  Google Scholar 

  • Walton OR (1992) Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech Mater 16:239–247

    Article  Google Scholar 

  • Weichselbraun A (2001) Vergleich unterschiedlicher Finiten-Volumen-Verfahren zur numerischen Simulation der Strömung in einem beheizten Rohrnetzwerk. Master thesis, Vienna University of Technology

    Google Scholar 

  • Weigert T, Ripperger S (1999) Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Part Part Syst Charact 16:238–242

    Article  Google Scholar 

  • Wen CY, Yu YH (1966) Mechanics of fluidization. AIChE J 62:100–111

    Google Scholar 

  • Xu BH, Yu AB (1997) Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52:2785–2809

    Article  Google Scholar 

  • Zhou YC, Wright BD, Yang RY, Xu BH, Yu AB (1999) Rolling friction in the dynamic simulation of sandpile formation. Physica 269:536–553

    Article  Google Scholar 

  • Zhou HS, Abanades S, Flamant G, Gauthier D, Lu J (2002a) Simulation of heavy metal vaporization dynamics in a fluidized bed. Chem Eng Sci 57:2603–2614

    Article  Google Scholar 

  • Zhou HS, Flamant G, Gauthier D, Lu J (2002b) Lagrangian approach for simulating the gas-particle flow structure in a circulating fluidized bed riser. Int J Multiphase Flow 28:1801–1821

    Article  MATH  Google Scholar 

  • Zhou HS, Flamant G, Gauthier D, Lu J (2004a) Numerical simulation of the turbulent gas-particle flow in a fluidized bed by an LES-DPM model. Chem Eng Res Des 82:918–926

    Article  Google Scholar 

  • Zhou HS, Flamant G, Gauthier D (2004b) DEM-LES of coal combustion in a bubbling fluidized bed (Part 1 + Part 2). Chem Eng Sci 59:4193–4215

    Article  Google Scholar 

  • Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci 62:3378–3396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Alobaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Alobaid, F. et al. (2017). Numerical Methods. In: Walter, H., Epple, B. (eds) Numerical Simulation of Power Plants and Firing Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4855-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4855-6_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4853-2

  • Online ISBN: 978-3-7091-4855-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics