Skip to main content

Cytology of the Pineal Gland: Changes Produced by Various Treatments

  • Conference paper
The Pineal Gland

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 13))

  • 74 Accesses

Summary

The cytological appearance of the pineal body is related to stage of development or age, time of day, exposure to illumination, season of the year, and reproductive state. Experimental manipulations that alter the normal cytology of the pineal include hypophysectomy, administration of any of several hormones or drugs, blinding, denervation and exposure to stressful influences such as heat or cold.

The effects of blinding are similar to the effects of continuous darkness on the pineal’s cytology. Ultrastructural examinations reveal a number of changes in the organelles, especially an increased number of vesicles and complex membranous whorls. These features suggest heightened activity and generally are coincident with sexual quiescence. Membranous whorls also may be induced by cold exposure.

Prolonged or continuous illumination leads to a reduction in the size of pinealocytes and to changes in their organelles that suggest reduced activity. Such alterations can often be correlated with heightened sexual activity. Sympathetic denervation of pineal glands also results in atrophy of the pinealocytes.

Reproductive condition is reflected in the appearance of the pinealocytes. The estrous cycle, pregnancy, castration and the administration of gonado-tropins or gonadal steroids affect pinealocyte structure. A feedback system involving the gonads and pineal gland is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barratt, G. F., Nadakavukaren, M. J., Frehn, J. L.: Effect of melatonin implants on gonadal weights and pineal gland fine structure of the golden hamster. Tissue Cell 9, 335–345 (1977).

    CAS  PubMed  Google Scholar 

  • Blumfield, M., Tapp, E.: Measurements. of pineal parenchymal cells and their nuclei in the albino rat at different ages. Acta Morphol. Neerl.-Scand. 8, 1–8 (1970).

    CAS  PubMed  Google Scholar 

  • Bondareff, W.: Electron microscope study of the pineal body in aged rats. J. Gerontol. 20, 321–327 (1965).

    Google Scholar 

  • Bostelmann, W.: Der Einfluß der bilateralen Kastration auf die Feinstruktur der Zirbeldrüse. Endokrinologie 54, 56–65 (1969).

    CAS  PubMed  Google Scholar 

  • Bucana, C. D., Nadakavukaren, M. J., Frehn, J. L.: Ultrastructural features of the pineal gland from cold-exposed golden hamsters. J. Neurocytol. 2, 237–247 (1973).

    CAS  PubMed  Google Scholar 

  • Campbell, E., Gibson, M. A.: A histological and histochemical study of the development of the pineal gland in the chick, Gallus domesticus. Can. J. Zool. 48, 1321–1328 (1970).

    CAS  PubMed  Google Scholar 

  • Clabough, J. W.: Ultrastructural features of the pineal gland in normal and light deprived golden hamsters. Z. Zeilforsch. 114, 151–164 (1971).

    CAS  Google Scholar 

  • Clementi, F., Fraschini, F., Müller, E., Zanoboni, A.: The pineal gland and the control of electrolyte balance and of gonadotropic secretion: functional and morphological observations. Progr. Brain Res. 10, 585–603 (1965).

    CAS  Google Scholar 

  • Collin, J. P.: Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: The Pineal Gland (Wolstenholme, G. E. W., Knight, J., eds.), pp. 79–120. Edinburgh-London: Churchill Livingstone. 1971.

    Google Scholar 

  • Das Gupta, T. K.: Cellular hypertrophy in rat pineals after castration. J. Endocrinol. 41, 607–608 (1968).

    CAS  PubMed  Google Scholar 

  • Deussen-Schmitter, M., Garweg, G., Schwabedal, P. E., Wartenberg, H.: Simultaneous changes of the perivascular contact area and HIOMT activity in the pineal organ after bilateral adrenalectomy in the rat. Anat. Embryol. 149, 297–305 (1976).

    CAS  PubMed  Google Scholar 

  • Doskočil, M.: Contribution to study of development of the chick embryo epiphysis cerebri. Folio Morph. 23, 247–255 (1975).

    Google Scholar 

  • Duffy, P. E., Markesbery, W. R.: Granulated vesicles in sympathetic nerve endings in the pineal gland: Observations on the effects of pharmacologic agents by electron microscopy. Am. J. Anat. 128, 97–116 (1970).

    CAS  PubMed  Google Scholar 

  • Freine, F., Cardinali, D. P.: Effects of melatonin treatment and environmental lighting on the ultrastructural appearance, melatonin synthesis, norepinephrine turnover and microtubule protein content of the rat pineal gland. J. Neural Transm. 37, 237–257 (1975).

    Google Scholar 

  • Fuji, E.: Ultrastructure of the pineal body of the domestic chicken, with special reference to the changes induced by altered photoperiods. Arch. Histol. Jap. 29, 271–303 (1968).

    Google Scholar 

  • Gonzales, G., Alvarez-Uria, M., Peydro, A., Rodrigo, J.: Modificaciones en la ultrastructura de la gianduia pineal resultantes de la oftal-moenucleacion bilateral. Bol. Real. Soc. Espan. Hist. Natur. Secc. Biol. 67, 193–197 (1969).

    Google Scholar 

  • Grunewald-Lowenstein, M.: Influence of light and darkness on the pineal body in Astyanax mexicanus (Filippi). Zoologica 41, 119–128 (1959).

    Google Scholar 

  • Gusek, W.: Die Feinstruktur der Rattenzirbel und ihr Verhalten unter Ein-fluß von Antiandrogen und nach Kastration. Endokrinologie 67, 129–151 (1976).

    CAS  PubMed  Google Scholar 

  • Hafeez, M. A., Quay, W. B.: Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen. Comp. Endocrinol. 13, 211–217 (1969).

    CAS  PubMed  Google Scholar 

  • Halaris, A., Matussek, N.: Effect of continuous illumination on mitochondria of the rat pineal body. Experientia 25, 486–487 (1969).

    CAS  PubMed  Google Scholar 

  • Hedlund, L.: Sympathetic innervation of the avian pineal body. Anat. Rec. 166, 406 (1970).

    Google Scholar 

  • Hedlund, L., Nalbandov, A. V.: Innervation of the avian pineal body. Am. Zool. 9, 1090 (1969).

    Google Scholar 

  • Henrickson, A. E., Kelly, D. E.: Development of the amphibian pineal organ: cell proliferation and migration. Anat. Rec. 165, 211–228 (1969).

    Google Scholar 

  • Ito, T., Matsushima, S.: Effects of gonadectomy and hypophysectomy on the pineal body of the mouse: a quantitative morphological study. Anat. Rec. 162, 479–482 (1968).

    CAS  PubMed  Google Scholar 

  • Iturriza, F. C.: Histochemical demonstration of biogenic monoamines in the pineal gland of the toad, Bufo arenarum. J. Histochem. Cytochem. 15, 301–303 (1967).

    CAS  PubMed  Google Scholar 

  • Japha, J. L., Eder, T. J., Goldsmith, E. D.: Calcified inclusions in the superficial pineal gland of the mongolian gerbil, Meriones unguiculatus. Acta Anat. 94, 533–544 (1976).

    CAS  PubMed  Google Scholar 

  • Johnson, J. R., Meyer, P. A. R., Westaby, D. A., Herbert, J.: The autonomie nerve supply to the ferret’s pineal gland studied by electron microscopy. J. Anat. 118, 491–506 (1974).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Juillard, M. T., Collin, J. P.: L’organe pinéal aviaire: étude ultracyto-chimique et pharmacologique d’un “pool” granulaire de 5-hydroxytryptamine chez la Perruche (Melopsittacus undulatus, Shaw). J. Micro. Biol. Cell 26, 133–138 (1976).

    CAS  Google Scholar 

  • Juillard, M. T., Hartwig, H. G., Collin, J. P.: The avian pineal organ. Distribution of endogenous monoamines; a fluorescence microscopic, microspectrofluorimetric and pharmacological study in the parakeet. J. Neural Transm. 40, 269–287 (1977).

    CAS  PubMed  Google Scholar 

  • Kachi, T., Matsushima, S., Ito, T.: Diurnal changes in glycogen content in the pineal cells of the male mouse: A quantitative histochemical study. Z. Zellforsch. 118, 310–314 (1971 a).

    CAS  PubMed  Google Scholar 

  • Kachi, T., Matsushima, S., Ito, T.: Effects of continuous lighting on glycogen in the pineal cells of the mouse: A quantitative histochemical study. Z. Zellforsch. 118, 214–220 (1971 b).

    CAS  PubMed  Google Scholar 

  • Kachi, T., Matsushima, S., Ito, T.: Effect of continuous darkness on diurnal rhythm in glycogen content in pineal cells of the mouse: A semi-quantitative histochemical study. Anat. Rec. 179, 405–410 (1974).

    CAS  PubMed  Google Scholar 

  • Kacbi, T., Matsushima, S., Ito, T.: Postnatal observations on the diurnal rhythm and the light-responsiveness in the pineal glycogen content in mice. Anat. Rec. 183, 39–46 (1975).

    Google Scholar 

  • Kappers, J. Ariëns: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr. Brain Res. 10, 87–151 (1965).

    CAS  Google Scholar 

  • Kappers, J. Ariëns: The mammalian pineal gland, a survey. Acta Neurochir. 34, 109–146 (1976).

    CAS  PubMed  Google Scholar 

  • Karasek, M.: The influence of hypophysectomy on the ultrastructure of the pineal gland in white rats. (Preliminary investigations.) Acta Med. Pol. 12, 153–156 (1971 a).

    CAS  PubMed  Google Scholar 

  • Karasek, M.: Ultrastructure of the epiphysis in white rats under normal conditions and after hypophysectomy. Polish Endocrinol. 22, 13–26 (1971 b).

    Google Scholar 

  • Karasek, M.: Ultrastructure of the rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3′, 5′-mono-phosphate and adenohypophysis. Endokrinologie 64, 106–114 (1974).

    CAS  PubMed  Google Scholar 

  • Karasek, M.: Quantitative changes in number of “synaptic” ribbons in rat pinealocytes after orchidectomy and in organ culture. J. Neural Transm. 38, 149–157 (1976).

    CAS  PubMed  Google Scholar 

  • Karasek, M., Pawlikowski, M., Kappers, J. Ariëns, Stqpień, H.: Influence of castration followed by administration of LH-RH on the ultrastructure of rat pinealocytes. Cell Tiss. Res. 167, 325–339 (1976 a).

    CAS  Google Scholar 

  • Karasek, M., Pawlikowski, M., Pevet, P., Stqpień, H.: Ultrastructural and fluorescence histochemical studies of the rat pineal gland after castration. Ann. Med. Sect. Pol. Acad. Sci. 21, 1–2 (1976 b).

    Google Scholar 

  • Kerenyi, N. A., von Westarp, C.: Post-natal transformation of the pineal gland: effect of constant darkness. Endocrinology 88, 1077–1079 (1971).

    Google Scholar 

  • Krstic, R.: Die Einwirkung von Kälte auf mit Zinkjodid-Osmiumtetroxyd reagierende synaptische Bläschen in den Nierenendigungen im Corpus pineale der Ratte. Z. Anat. Entwicklungsgesch. 135, 301–306 (1972).

    CAS  PubMed  Google Scholar 

  • Legait, H., Roux, M., Dussart, G., Richoux, J. P., Contet-Audonneau, J. L.: Données morphométriques sur la glande pinéale du Loir (Glis glis) et du Lérot (Eliomys quercinus) au cours du cycle annuel. C.R. Soc. Biol. 169, 132 (1975).

    CAS  Google Scholar 

  • Lin, H.-S., Hwang, B.-H., Tseng, C.-Y.: Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy. Cell Tiss. Res. 158, 285–299 (1975).

    CAS  Google Scholar 

  • Lincoln, G. A.: Seasonal changes in the pineal gland related to the reproductive cycle in the male hare, Lepus europaeus. J. Reprod. Fert. 46, 489–491 (1976).

    CAS  Google Scholar 

  • Lues, G.: The fine structure of the pineal gland of normal, pregnant and experimentally affected guinea-pigs. Z. Zellforsch. 114, 38–60 (1971).

    CAS  PubMed  Google Scholar 

  • Lupulescu, A.: Ultrastructure of the pineal gland after hypophysectomy. Experientia 24, 482–484 (1968).

    CAS  PubMed  Google Scholar 

  • Machado, A. B. M.: Electron microscopy of developing sympathetic fibers in the rat pineal body. The formation of granular vesicles. Progr. Brain Res. 34, 171–185 (1971).

    Google Scholar 

  • Machado, C. R. S., Wragg, L. E., Machado, A. B. M.: A histochemical study of sympathetic innervation and 5-hydroxytryptamine in the developing pineal body of the rat. Brain Res. 8, 310–318 (1968).

    CAS  PubMed  Google Scholar 

  • Milcou, S. M., Postelnicou, D.: L’influence de l’illumination prolongée sur la structure de l’épiphyse chez canard. Rev. Roumaine Endocrinol. 1, 175–177 (1964).

    Google Scholar 

  • Miline, R., Devecerski, V., Krstic, R.: Effets des stimuli auditifs sur la glande pinéale de la chauvesouris en hibernation. Acta Anat., Suppl. 56, 73, 293–300 (1969).

    CAS  Google Scholar 

  • Miline, R., Devecerski, V., Sijacki, N., Krstic, R.: Pineal gland behaviour as affected by cold. Hormones 1, 321–331 (1970).

    CAS  PubMed  Google Scholar 

  • Miline, R., Krstic, R., Devecerski, V.: Sur le comportement de la glande pineale dans des conditions de stress. Acta Anat. 71, 352–402 (1968).

    CAS  PubMed  Google Scholar 

  • Mogler, R. K.-H.: Das endokrine System des syrischen Goldhamsters unter Berücksichtigung des natürlichen und experimentellen Winterschlafs. Z. Morph. Oekol. Tiere 47, 267–308 (1958).

    Google Scholar 

  • Muta, W. M. J.: Development and cytological study of the pineal body of coturnix quail. M.S. Thesis, University of Pittsburgh, 1965.

    Google Scholar 

  • Nir, I., Hirschmann, N., Sulman, F. G.: Diurnal rhythms of pineal nucleic acids and protein. Neuroendocrinology 7, 271–277 (1971).

    CAS  PubMed  Google Scholar 

  • Nir, I., Hirschmann, N., Sulman, F. G.: Pineal gland changes of rats exposed to heat. Experientia 28, 701–702 (1972).

    CAS  PubMed  Google Scholar 

  • Omura, Y.: Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus. Cell Tiss. Res. 160, 99–112 (1975).

    CAS  Google Scholar 

  • Owman, Ch.: Localization of neuronal and parenchymal monoamines under normal and experimental conditions in the mammalian pineal gland. Progr. Brain Res. 10, 423–453 (1965).

    CAS  Google Scholar 

  • Pellegrino de Iraldi, A., de Robertis, E.: Action of reserpine, iproniazid and pyrogallol on nerve endings of the pineal gland. Int. J. Neuro-pharmacol. 2, 231–239 (1963).

    Google Scholar 

  • Pellegrino de Iraidi, A., Suburo, A. M.: Effect of tyramine on the compartments of the granulated vesicles in rat pineal nerve endings. Eur. J. Pharmacol. 19, 251–259 (1972).

    Google Scholar 

  • Pevet, P., Saboureau, M.: L’épiphyse du Hérisson (Erinaceus europaeus L.) male. I. Les pinéalocytes et leur variations ultrastructurales considerées au cours du cycle sexuel. Z. Zellforsch. 143, 367–385 (1973).

    CAS  PubMed  Google Scholar 

  • Pevet, P., Saboureau, M.: Effect of serotonin administration on the ultra-structure of pinealocytes during the period of maximal sexual activity of the male hedgehog (Erinaceus europaeus L.). Experientia 30, 1069 to 1070 (1974).

    CAS  PubMed  Google Scholar 

  • Pevet, P., Smith, A. R.: The pineal gland of the mole (Talpa europaea L.). II. Ultrastructural variations observed in the pinealocytes during different parts of the sexual cycle. J. Neural Transm. 36, 227–248 (1975).

    CAS  PubMed  Google Scholar 

  • Pevet, P., Smith, A. R., van de Kar, L., van Bronswijk, H.: Effect of castration on the rat pineal gland. A fluorescence histochemical and biochemical study. Experientia 31, 1237–1238 (1975).

    CAS  PubMed  Google Scholar 

  • Pflügfelder, O.: Physiologie der Epiphyse. Verh.-dtsch. Zool. Gesell. 50, 53–75 (1956).

    Google Scholar 

  • Popova, N. K., Kolaeva, S. G., Dianova, I. I.: State of the pineal gland during hibernation. Bull. exp. Biol. Med. (USSR) 79, 467–468 (1975).

    Google Scholar 

  • Quay, W. B.: Volumetric and cytologic variation in the pineal body of Peromyscus leucopus (Rodentia) with respect to sex, captivity and day-length. J. Morph. 98, 471–495 (1956).

    CAS  Google Scholar 

  • Quay, W. B.: Reduction of mammalian pineal weight and lipid during continuous light. Gen. Comp. Endocrinol. 1, 211–217 (1961).

    CAS  PubMed  Google Scholar 

  • Quay, W. B.: Histological structure and cytology of the pineal organ in birds and mammals. Progr. Brain Res. 10, 49–86 (1965).

    CAS  Google Scholar 

  • Quay, W. B.: The role of the pineal gland in environmental adaptation. In: Physiology and Pathology of Adaptation Mechanisms (Bajusz, E., ed.), pp. 508-550. 1969.

    Google Scholar 

  • Quay, W. B.: Pineal Chemistry. Springfield: Ch. C Thomas. 1974.

    Google Scholar 

  • Quay, W. B.: Pineal caniculi: demonstration, twenty-four-hour rhythmicity and experimental modification. Am. J. Anat. 139, 81–94 (1974 b).

    CAS  PubMed  Google Scholar 

  • Quay, W. B.: Seasonal cycle and physiological correlates of pinealocyte nuclear and nucleolar diameters in the bats, Myotis lucifugus and Myotis sodalis. Gen. Comp. Endocrinol. 29, 369–375 (1976).

    CAS  PubMed  Google Scholar 

  • Quay, W. B., Renzoni, A.: Comparative and experimental studies of pineal structure and cytology in passeriform birds. Riv. Biol. 56, 363–407 (1963).

    CAS  PubMed  Google Scholar 

  • Quay, W. B., Renzoni, A.: Twenty-four-hour rhythm in pineal mitotic activity and nuclear and nucleolar dimensions. Growth 30, 315–324 (1967).

    Google Scholar 

  • Ralph, C. L.: The pineal gland and geographical distribution of animals. Int. J. Biometeor. 19, 289–303 (1975 a).

    CAS  Google Scholar 

  • Ralph, C. L.: The pineal complex: a retrospective view. Amer. Zool. 15 (Suppl. 1), 105–116 (1975 b).

    Google Scholar 

  • Ralph, C. L.: Correlations of melatonin content in pineal gland, blood, and brain of some birds and mammals. Amer. Zool. 16, 35–43 (1976).

    CAS  Google Scholar 

  • Ralph, C. L., Lane, K. B.: Morphology of the pineal body of wild house sparrows (Passer domesticus) in relation to reproduction and age. Can. J. Zool. 47, 1205–1208 (1969).

    CAS  PubMed  Google Scholar 

  • Reiss, M., Sideman, M. B., Plichta, E. S.: Spontaneous activity and pineal gland cell density. J. Endocrinol. 37, 475–476 (1967).

    CAS  PubMed  Google Scholar 

  • Reiter, R. J.: Circannual reproductive rhythms in mammals related to photoperiod and pineal function: a review. Chronobiology 1, 365–395 (1974).

    CAS  Google Scholar 

  • Reiter, R. J., Welsh, M. G., Vaughan, M. K.: Age-related changes in the intact and sympathetically denervated gerbil pineal gland. Am. J. Anat. 146, 427–432 (1976).

    CAS  PubMed  Google Scholar 

  • Romijn, H. J.: The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination, and continuous darkness. J. Neural Transm. 36, 183–194 (1975).

    CAS  PubMed  Google Scholar 

  • Romijn, H. J.: The influence of some sympatholytic, parasympatholytic and serotonin-synthesis-inhibiting agents on the ultrastructure of the rabbit pineal organ. Cell Tiss. Res. 167, 167–177 (1976).

    CAS  Google Scholar 

  • Romijn, H. J., Mud, M. T., Wolters, P. S.: Diurnal variations in number of Golgi-dense core vesicles in light pinealocytes of the rabbit. J. Neural Transm. 38, 231–237 (1976).

    CAS  PubMed  Google Scholar 

  • Roth, W. D., Wurtman, R. J., Altschule, M. D.: Morphologic changes in the pineal parenchyma cells of rats exposed to continuous light or darkness. Endocrinology 71, 888–892 (1962).

    CAS  PubMed  Google Scholar 

  • Roux, M., Richoux, J. P., Dussart, G.: Étude ultrastructurale de l’épiphyse de Lerot (Eliomys quercinus, L.). Bull. de l’assoc. Anat. 58, 1–2 (1974).

    Google Scholar 

  • Satodate, R., Sasaki, K., Minoru, O.: The pineal gland of intact, hypophy-sectonized, or ovariectomized rats. Arch. Neurol. 23, 278–286 (1970 a).

    CAS  PubMed  Google Scholar 

  • Satodate, R., Hsieh, K. S., Ota, M.: Morphological changes in the pineal gland of the albino rat by hypophysectomy and ovariectomy. Experientia 26, 638–640 (1970 b).

    CAS  PubMed  Google Scholar 

  • Smith, A. R., Pevet, P., van de Kar, L., Oosterom, R. v.: Effect of gonadotropic hormones on the rat pineal gland. A fluorescence histochemical and biochemical study. J. Neural Transm. 36, 217–226 (1975).

    CAS  PubMed  Google Scholar 

  • Spiroff, B. E. N.: Embryonic and post-hatching development of the pineal body of the domestic fowl. Am. J. Anat. 103, 375–401 (1958).

    CAS  PubMed  Google Scholar 

  • Tapp, E., Blumfield, M.: The parenchymal cells of the rat pineal gland. Acta Morphol. Neerl.-Scand. 8, 119–131 (1970).

    CAS  PubMed  Google Scholar 

  • Tapp, E., Huxley, M.: The histological appearance of the human pineal gland from puberty to old age. J. Pathol. 108, 137–143 (1972).

    CAS  PubMed  Google Scholar 

  • Trakulrungsi, W. K., Yeager, V. L.: Effect of photoperiod on early changes in the neonatal rat pineal gland. Experientia 33, 84–85 (1977).

    CAS  PubMed  Google Scholar 

  • Ueck, M.: Weitere Untersuchungen zur Feinstruktur und Innervation des Pinealorgans von Passer domesticus L. Z. Zellforsch. 105, 276–302 (1970).

    CAS  PubMed  Google Scholar 

  • Upson, R. H., Benson, B., Satterfield, V.: Quantitation of ultrastructural changes in the mouse pineal in response to continuous illumination. Anat. Rec. 184, 311–324 (1976).

    CAS  PubMed  Google Scholar 

  • Vivien, J. H.: Signes de stimulation des activités sécrétoire des pinéalocytes chez la couleuvre Tropidonotus natrix L. traitée par des principes gonadotropes. C.R. Acad. Sci. 260, 5371–5372 (1965).

    Google Scholar 

  • Vollrath, L.: Synaptic ribbons of a mammalian pineal gland: circadian changes. Z. Zeilforsch. 145, 171–183 (1973).

    CAS  Google Scholar 

  • Vollrath, L., Huss, H.: The synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z. 2ellforsch. 139, 417–429 (1973).

    CAS  Google Scholar 

  • Vollrath, L., Schmidt, D. S.: Enzymhistochemische Untersuchungen an der Zirbeldrüse normaler und trächtiger Meerschweinchen. Histochemie 20, 328–337 (1969).

    CAS  PubMed  Google Scholar 

  • Wolfe, D. E., Potter, L. T., Richardson, K. C., Axelrod, J.: Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138, 440–442 (1962).

    CAS  PubMed  Google Scholar 

  • Wurtman, R. J., Axelrod, J., Kelly, D. E.: The Pineal. New York: Academic Press. 1968.

    Google Scholar 

  • Zweens, J.: Influence of the oestrous cycle and ovariectomy on the phospholipid content of the pineal gland in the rat. Nature 197, 1114 to 1115 (1963).

    CAS  PubMed  Google Scholar 

  • Zweens, J.: Alterations of the pineal lipid content in the rat under hormonal influences. Progr. Brain Res. 10, 540–551 (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Wien

About this paper

Cite this paper

Ralph, C.L. (1978). Cytology of the Pineal Gland: Changes Produced by Various Treatments. In: Nir, I., Reiter, R.J., Wurtman, R.J. (eds) The Pineal Gland. Journal of Neural Transmission, vol 13. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4427-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4427-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4429-9

  • Online ISBN: 978-3-7091-4427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics