Calmodulin, Ca2+-Antagonists and Ca2+-Transporters in Nerve and Muscle

  • J. D. Johnson
  • Laura A. Wittenauer
  • R. D. Nathan
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 18)


Calcium is of fundamental importance in the regulation of both muscle contraction and neurosecretion. Its control of these processes is achieved by its binding and activation of various Ca2+-binding proteins (CBP), including those in the Ca2+ channel, the Na+-Ca2+ antiporter, and intracellular calmodulin (CDR). Generally, Ca2+-binding to regulatory CBP exposes hydrophobic sites on their surface at which the CBP interfaces with its receptor or binds inhibitory hydrophobic ligands. We find that some Ca2+-antagonist drugs (Ca-ANT) bind to and inhibit calmodulin and that some calmodulin antagonists (CDR-ANT) block Ca2+ channels. This suggests that CDR and the CBP that regulate the Ca2+ channel may be quite homologous proteins. Ca-ANT and CDR-ANT are not effective inhibitors of the Na+-Ca2+ antiporters of heart sarcolemma and brain synaptosomes, suggesting that these antiporters are fundamentally different from the antiporter of heart mitochondria. These results are discussed in terms of Ca2+-binding proteins being potential targets for pharmacological interventions designed to block specific aspects of the action of calcium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, N., Lee, K. S., Brown, A. M.: The calcium current of a Helix neuron. J. Gen. Physiol. 71, 509–531 (1978 b).Google Scholar
  2. Ashcroft, F. M., Stanfield, P.R.: Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect. Science 213, 224–226 (1981).CrossRefPubMedGoogle Scholar
  3. Barry, W.H., Smith, T. W.: Mechanisms of contractile calcium uptake by cultured heart cells. Circulation 62, III, 112 (1981).Google Scholar
  4. Cheung W. Y.: Calmodulin plays a pivotal role in cellular regulation. Science 207, 19–27 (1980).CrossRefPubMedGoogle Scholar
  5. Cheung, W. Y.: Calmodulin: an overview. Fed. Proc. 41, 2253–2257 (1982).PubMedGoogle Scholar
  6. Crouch, T. H., Holroyde, M.J., Collins, J. H., Solaro, R. S., Potter, J. D.: Interaction of calmodulin with skeletal muscle myosin light chain kinase. Biochemistry 20, 6318–6325 (1981).CrossRefPubMedGoogle Scholar
  7. DeLorenzo, R.J.: Calmodulin in neurotransmitter release and synaptic function. Fed. Proc. 41, 2265–2272 (1982).PubMedGoogle Scholar
  8. Fleckenstein, A.: Specific pharmacology of calcium in myocardium cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17, 149–166 (1977).CrossRefGoogle Scholar
  9. Hagiwara, S., Takahashi, K.: Surface density of calcium binding sites in the barnacle muscle fiber membrane. J. Gen. Physiol. 50, 583–601 (1967).CrossRefPubMedCentralPubMedGoogle Scholar
  10. Hajos, F.: An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93, 485–489 (1975).CrossRefPubMedGoogle Scholar
  11. Hartshorne, D.J., Siemankowski, R. F.: Regulation of smooth muscle actomyosin. Ann. Rev. Physiol. 43, 519–530 (1981).CrossRefGoogle Scholar
  12. Hidaka, H., Yamaki, T, Maka, M., Tanaka, T, Hayashi, H., Kobayashi, R.: Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol. Pharmacol. 17, 66–72 (1980).PubMedGoogle Scholar
  13. Johnson, J.D., Collins, J. H., Potter, J. D.: Dansylaziridine-labelled troponin C. A fluorescent probe of Ca’-binding to the Ca’-specific regulatory sites. J. Biol. Chem. 253, 6451–6458 (1978).PubMedGoogle Scholar
  14. Johnson, J. D., Robinson, D.E., Robertson, S. P., Schwartz, A., Potter, JD.: Ca’ exchange with troponin and the regulation of muscle contraction. In: The Regulation of Muscle Contraction, Excitation-Contraction Coupling (Grinnell, A.D., ed.), pp. 241–259. Academic Press. 1981 a.Google Scholar
  15. Johnson, J. D., Holroycle, M.J., Crouch, T. H., Solaro, R.J., Potter, J. D.: Fluorescence studies of the interaction of calmodulin with myosin light chain kinase. J. Biol. Chem. 256, 12194–12198 (1981 b).Google Scholar
  16. Johnson, J. D., Vaghy, P. L., Crouch, T H., Potter, J. D., Schwartz, A.: A hypothesis for the mechanism of action of some of the Cat+-antagonists drugs: Calmodulin as a receptor. In: Advances in Pharmacology and Therapeutics II (Yoshida, H., Hagihara, Y, Eboshi, S., eds.), Vol. 3, pp. 121–138. Pergamon Press. 1982.Google Scholar
  17. Kass, R. S., Tsien, R. W.: Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J. Gen. Physiol. 66, 169–192 (1975).CrossRefPubMedGoogle Scholar
  18. Klee, C. B., Crouch, T H., Richman, P. G.: Calmodulin. Ann. Rev. Biochem. 49, 489–515 (1980).CrossRefPubMedGoogle Scholar
  19. LaPorte, D. C., Wiesman, B. M., Storm, D. R.: Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19, 3814–3819 (1980).CrossRefPubMedGoogle Scholar
  20. Levin, R.M., Weiss, B.: Binding of trifluoperazine to the Cat+-dependent activator of cyclic nucleotide phosphodiesterase. Mol. Pharmacol. 13, 690–697 (1977).PubMedGoogle Scholar
  21. McGraw, C. F., Machsen, D.A., Blaustein, M. P.: Calcium movement and regulation in presynaptic nerve terminals. In: Calcium and Cell Function (Cheung, W. Y., ed.), Vol. III, Chap. 3, pp. 81–110. Academic Press. 1982.Google Scholar
  22. MacKenzie, E., Standen, N. B.: The effects of stimulation rate on calcium-dependent action potentials recorded from chick embryo heart cell aggregates. J. Physiol. (London) 324, 1–10 (1982).CrossRefGoogle Scholar
  23. Mullins, T.J., Requena, J.: The “late” Ca channel in squid axons. J. Gen. Physiol. 78, 683–700 (1981).CrossRefPubMedGoogle Scholar
  24. Murphy, K. M. M., Snyder, S.: Calcium antagonist receptor binding sites labelled with [3HjNitrendipine. Europ. J. Pharmacol. 77, 201–202 (1982).CrossRefGoogle Scholar
  25. Nachsen, D. A., Blaustein, M. P.: The effects of some organic “Calcium Antagonists” on calcium influx in presynaptic nerve terminals. Molec. Pharmacol. 16, 579–586 (1979).Google Scholar
  26. Nakamura, Y., Nakahama, T, Ushiwata, A., Takeda, M., Nakaya, K.: Isolation and partial characterization of an acidic calcium binding protein from synaptic plasma membranes of rat brain. FEBS Letters 112, 155–158 (1980).CrossRefPubMedGoogle Scholar
  27. Nathan, R. D., DeHaan, R. L.: Voltage clamp analysis of embryonic heart cell aggregates. J. Gen. Physiol. 73, 175–198 (1979).CrossRefPubMedGoogle Scholar
  28. Nathan, R. D., Fung, S.J., Stocco, D. M., Barron, E. A., Markwald, R. R.: Sialic acid: regulation of electrogenesis in cultured heart cells. Am. J. Physiol. 239 (Cell Physiol. 8), C 197-C 207 (1980).Google Scholar
  29. Potter, J. D., Johnson, J. D.: Troponin. In: Calcium and Cell Function (Cheung W. Y., ed.), Vol. II, Chap. 5, pp. 145–173. Academic Press. 1982.Google Scholar
  30. Reeves, J. P., Sutko, J. L.: Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Nat. Acad. Sci. U.S.A. 76, 590–594 (1979).CrossRefGoogle Scholar
  31. Tanaka, T, Hidaka, H.: Hydrophobic regions function in calmodulin- enzyme(s) interactions. J. Biol. Chem. 255, 11078–11080 (1980).PubMedGoogle Scholar
  32. Vaghy, P. L., Johnson, J. D., Matlib, M.A., Wang, T., Schwartz, A.: Selective inhibition of Nat-induced CaZ+ release from heart mitochondria by diltiazem and certain other CaZ+-antagonist drugs. J. Biol. Chem. 257, 6000–6002 (1982).PubMedGoogle Scholar
  33. Van Belle, H.: R24571: A potent inhibitor of calmodulin-activated enzymes. Cell Calcium 2, 483–494 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • J. D. Johnson
    • 1
    • 3
  • Laura A. Wittenauer
    • 1
  • R. D. Nathan
    • 2
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Department of PhysiologyTexas Tech University Health Sciences CenterLubbockUSA
  3. 3.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations