Differentiation—Dependent Changes of the Nicotinic Acetylcholine Receptor and Other Synapse-Associated Proteins

  • V. Witzemann
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 18)


Developmentally regulated changes were followed by analyzing the appearance of synapse-associated proteins of the electric organ of Torpedo marmorata. At early stages of development acetylcholine receptor and acetylcholine esterase are distributed diffusely over the myotube surface. With differentiation they become increasingly restricted to the central cell surface. This process occurs before axons contact the electrocytes. As soon as axons begin to contact electrocytes one finds a rapid increase in acetylcholine receptor concentration, which is shortly followed by an increased synthesis of 17 S AChE. The final stages of the synapse formation coincide with increasing amounts of a hydrophobic 6 S AChE and increasing amounts of Mr 43 000 polypeptides, suggesting that the appearance of these components is linked to the maturation of receptor and synapse function.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrantes, F.J., Neugebauer, D.-Ch., Zingsheim, H.P.: Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata. FEBS Lett. 112, 73–78 (1980).CrossRefPubMedGoogle Scholar
  2. Changeux, J. P.: The acetylcholine receptor: An “allosteric” membrane protein (The Harvey Lectures, Series 75), pp. 85–254. Academic Press. 1981.Google Scholar
  3. Conti-Tronconi, B. M., Dunn, S. M.J., Raftery, M. A.: Functional stability of Torpedo acetylcholine receptor-effects of protease treatment. Biochem. 21, 893–899 (1982).CrossRefGoogle Scholar
  4. Dennis, M.J.: Development of the neuromuscular junction: inductive inter-actions between cells. Am. Rev. Neurosci. 4, 43–68 (1981).CrossRefGoogle Scholar
  5. Fambrough, D.M.: Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59 165–227 (1979).Google Scholar
  6. Fox, G. Q, Richardson, G. P.: The developmental morphology of Torpedo marmorata: Electric organ—myogenic phase. J. Comp. Neurol. 179, 677–698 (1978).CrossRefPubMedGoogle Scholar
  7. Fox, G. Q, Richardson, G. P.: The developmental morphology of Torpedo marmorata: Electric organ—electrogenic phase. J. Comp. Neurol. 185, 293–316 (1979).CrossRefPubMedGoogle Scholar
  8. Froehner, S. C., Gulbrandsen, V, Hyman, C., Yeng, A. Y, Neubig, R. R., Cohen, J. B.: Immunofluorescence localization at the mammalian neuromuscular junction of the Mr43 000 protein of Torpedo postsynaptic membranes. Proc. Natl. Acad. Sci. U.S.A. 78, 5230–5234 (1981).CrossRefPubMedCentralPubMedGoogle Scholar
  9. Gysin, R., Wirth, M., Flanagan, S. D.: Structural heterogeneity and subcellular distribution of the nicotinic synapse-associated proteins. J. Biol. Chem. 256, 11373–11376 (1981).PubMedGoogle Scholar
  10. Krenz, W-D., Tashiro, T, Wächtler, K., Whittaker, V. P., Witzemann, V: Aspects of chemical embryology of the electromotor system of Torpedo marmorata with special reference to synaptogenesis. Neuroscience 5, 617–624 (1980).CrossRefPubMedGoogle Scholar
  11. Lo, M. M. S., Garland, P. B., Lamprecht,J., Barnard, E. A.: Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization. FEBS Lett. 111, 407–412 (1980).Google Scholar
  12. Massoulie,J., Bon, S.: The molecular forms of cholinesterase and acetylcholi-nesterase in vertebrates. Ann. Rev. Neurosci. 5, 57–106 (1982).CrossRefGoogle Scholar
  13. Pumplin, D. W, Fambrough, D. M.: Turnover of acetylcholine receptors in skeletal muscle. Ann. Rev. Physiol. 44, 319–335 (1982).CrossRefGoogle Scholar
  14. Raftery, M. A., Hunkapillar, M. W, Strader, C. D., Hood, L. E.: Acetylcholinereceptor-complex of homologous subunits. Science 208, 1454–1457 (1980).CrossRefPubMedGoogle Scholar
  15. Reiness, C. G., Hall, Z. W: The developmental change in immunological properties of the acetylcholine receptor in rat muscle. Dev. Biol. 81, 324–331 (1981).CrossRefPubMedGoogle Scholar
  16. Saitoh, T. H., Wennogle, L. P., Changeux, J.-P.: Factors regulating the suscepti-bility of the acetylcholine receptor protein to heat inactivation. FEBS Lett. 108, 489–494 (1979).CrossRefPubMedGoogle Scholar
  17. Saitoh, T. H., Changeux, J.-P.: Change in state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. USA 78, 4430–4434 (1981).CrossRefPubMedCentralPubMedGoogle Scholar
  18. St.John, P. A., Froehner, S. C., Goodenough, D.A., Cohen, J. B.: Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides. J. Cell Biol. 92, 333–342 (1982).CrossRefGoogle Scholar
  19. Weinberg, C. B., Hall, Z. W.: Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc. Natl. Acad. Sci. U.S.A. 76, 504–508 (1979).CrossRefPubMedCentralPubMedGoogle Scholar
  20. Wennogle, L. P., Changeux,J.-P.: Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Fur. J.Biochem. 106, 381–393 (1980).Google Scholar
  21. Witzemann, V., Boustead, C.: Changes in acetylcholinesterase molecular forms during the embryonic development of. Torpedo marmorata. J. Neurochem. 39, 747–755 (1982).CrossRefGoogle Scholar
  22. Witzemann, V., Richardson, G. P., Boustead, C.: Characterization and distribution of acetylcholine receptors and acetylcholinesterase during electric organ development in Torpedo marmorataNeuroscience. 1982 (in press).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • V. Witzemann
    • 1
  1. 1.Abteilung NeurochemieMax-Planck-Institut für biophysikalische ChemieGöttingenFederal Republic of Germany

Personalised recommendations