Skip to main content

Differentiation—Dependent Changes of the Nicotinic Acetylcholine Receptor and Other Synapse-Associated Proteins

  • Conference paper
  • 42 Accesses

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 18))

Summary

Developmentally regulated changes were followed by analyzing the appearance of synapse-associated proteins of the electric organ of Torpedo marmorata. At early stages of development acetylcholine receptor and acetylcholine esterase are distributed diffusely over the myotube surface. With differentiation they become increasingly restricted to the central cell surface. This process occurs before axons contact the electrocytes. As soon as axons begin to contact electrocytes one finds a rapid increase in acetylcholine receptor concentration, which is shortly followed by an increased synthesis of 17 S AChE. The final stages of the synapse formation coincide with increasing amounts of a hydrophobic 6 S AChE and increasing amounts of Mr 43 000 polypeptides, suggesting that the appearance of these components is linked to the maturation of receptor and synapse function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrantes, F.J., Neugebauer, D.-Ch., Zingsheim, H.P.: Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata. FEBS Lett. 112, 73–78 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Changeux, J. P.: The acetylcholine receptor: An “allosteric” membrane protein (The Harvey Lectures, Series 75), pp. 85–254. Academic Press. 1981.

    Google Scholar 

  • Conti-Tronconi, B. M., Dunn, S. M.J., Raftery, M. A.: Functional stability of Torpedo acetylcholine receptor-effects of protease treatment. Biochem. 21, 893–899 (1982).

    Article  CAS  Google Scholar 

  • Dennis, M.J.: Development of the neuromuscular junction: inductive inter-actions between cells. Am. Rev. Neurosci. 4, 43–68 (1981).

    Article  CAS  Google Scholar 

  • Fambrough, D.M.: Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59 165–227 (1979).

    Google Scholar 

  • Fox, G. Q, Richardson, G. P.: The developmental morphology of Torpedo marmorata: Electric organ—myogenic phase. J. Comp. Neurol. 179, 677–698 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Fox, G. Q, Richardson, G. P.: The developmental morphology of Torpedo marmorata: Electric organ—electrogenic phase. J. Comp. Neurol. 185, 293–316 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Froehner, S. C., Gulbrandsen, V, Hyman, C., Yeng, A. Y, Neubig, R. R., Cohen, J. B.: Immunofluorescence localization at the mammalian neuromuscular junction of the Mr43 000 protein of Torpedo postsynaptic membranes. Proc. Natl. Acad. Sci. U.S.A. 78, 5230–5234 (1981).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gysin, R., Wirth, M., Flanagan, S. D.: Structural heterogeneity and subcellular distribution of the nicotinic synapse-associated proteins. J. Biol. Chem. 256, 11373–11376 (1981).

    CAS  PubMed  Google Scholar 

  • Krenz, W-D., Tashiro, T, Wächtler, K., Whittaker, V. P., Witzemann, V: Aspects of chemical embryology of the electromotor system of Torpedo marmorata with special reference to synaptogenesis. Neuroscience 5, 617–624 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Lo, M. M. S., Garland, P. B., Lamprecht,J., Barnard, E. A.: Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarization. FEBS Lett. 111, 407–412 (1980).

    CAS  Google Scholar 

  • Massoulie,J., Bon, S.: The molecular forms of cholinesterase and acetylcholi-nesterase in vertebrates. Ann. Rev. Neurosci. 5, 57–106 (1982).

    Article  Google Scholar 

  • Pumplin, D. W, Fambrough, D. M.: Turnover of acetylcholine receptors in skeletal muscle. Ann. Rev. Physiol. 44, 319–335 (1982).

    Article  CAS  Google Scholar 

  • Raftery, M. A., Hunkapillar, M. W, Strader, C. D., Hood, L. E.: Acetylcholinereceptor-complex of homologous subunits. Science 208, 1454–1457 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Reiness, C. G., Hall, Z. W: The developmental change in immunological properties of the acetylcholine receptor in rat muscle. Dev. Biol. 81, 324–331 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, T. H., Wennogle, L. P., Changeux, J.-P.: Factors regulating the suscepti-bility of the acetylcholine receptor protein to heat inactivation. FEBS Lett. 108, 489–494 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, T. H., Changeux, J.-P.: Change in state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. USA 78, 4430–4434 (1981).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • St.John, P. A., Froehner, S. C., Goodenough, D.A., Cohen, J. B.: Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides. J. Cell Biol. 92, 333–342 (1982).

    Article  Google Scholar 

  • Weinberg, C. B., Hall, Z. W.: Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc. Natl. Acad. Sci. U.S.A. 76, 504–508 (1979).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wennogle, L. P., Changeux,J.-P.: Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Fur. J.Biochem. 106, 381–393 (1980).

    CAS  Google Scholar 

  • Witzemann, V., Boustead, C.: Changes in acetylcholinesterase molecular forms during the embryonic development of. Torpedo marmorata. J. Neurochem. 39, 747–755 (1982).

    Article  CAS  Google Scholar 

  • Witzemann, V., Richardson, G. P., Boustead, C.: Characterization and distribution of acetylcholine receptors and acetylcholinesterase during electric organ development in Torpedo marmorataNeuroscience. 1982 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this paper

Cite this paper

Witzemann, V. (1983). Differentiation—Dependent Changes of the Nicotinic Acetylcholine Receptor and Other Synapse-Associated Proteins. In: Goldstein, M., Jellinger, K., Riederer, P. (eds) Basic Aspects of Receptor Biochemistry. Journal of Neural Transmission, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4408-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4408-4_35

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4410-7

  • Online ISBN: 978-3-7091-4408-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics