Control and Movement of Lower Limbs

  • Necip Berme
Part of the International Centre for Mechanical Sciences book series (CISM, volume 263)


Each individual has a characteristic gait pattern, and it is even possible to recognise a person simply from his footsteps. However, these characteristic differences appear to be subtle variations superimposed on a basic pattern and for the purpose of locomotion studies it is the basic pattern that is of interest.


Stance Phase Swing Phase Force Platform Lower Limb Muscle Heel Strike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    University of California Report, Fundamental Studies of Human Locomotion and Other Information Relating to Design of Artificial Limbs, University of California, Berkeley, 1947.Google Scholar
  2. 2.
    Grieve, D.W., The assessment of gait, Physiotherapy, 55, 452, 1969.Google Scholar
  3. 3.
    Cunningham, D.M. and Brown, G.W., Two devices for measuring the forces acting on the human body during walking, Proc. SESA, 14 (2), 75, 1952.Google Scholar
  4. 4.
    Berme, N., Lawes, P., Solomonidis, S.E. and Paul, J.P., A shorter pylon transducer for measurement of prosthetic forces and moments during amputee gait, Eng. in Med., 4(4), 6, 1975.Google Scholar
  5. 5.
    Spolek, G.A., Day, E.E., Lippert F.G. and Kirkpatrick, G.S., Ambulatory-force measurement using an instrumented-shoe system, Experimental Mechanics, 15 (7), 271, 1975.CrossRefGoogle Scholar
  6. 6.
    Steffens, E.P., Engelke, K.W. and Boenick, U., Untersuchung der Belastung von Unterschenkel-Rohrskelettprothesen auf Genbahnen ausserhalb des Hauses, Biomediznische Technik, 22 (1–2) 8, 1977.Google Scholar
  7. 7.
    Lamoreux, L.W., Kinematic measurements in the study of human walking, Bul. Prosthetic Research, 10–15, 3, 1971.Google Scholar
  8. 8.
    Muybridge, E., The Human Figure in Motion, Chapman and Hall, London,1901.Google Scholar
  9. 9.
    Marey, E.J., La Methode Graphique dans les Sciences Experimentales,Masson, Paris, 1872, 2nd. ed. with supplement Le Developpement de la Methode Graphique par la Photographie, 1882.Google Scholar
  10. 10.
    Marey, E.J., Le Mouvement, Masson, Paris, 1894.Google Scholar
  11. 11.
    Braune, C.W. and Fischer, O., Der Gang des Menschen in abhandlungen der Saechs, Gessellschaft der Wissenschaften, 21, 1898.Google Scholar
  12. 12.
    Bernstein, N.A. The Co-ordination and Regulation of Movements, Pergamon Press, Oxford, 1967.Google Scholar
  13. 13.
    Winter, D.A., Greenlow, R.R. and Hobson, D.A., Television-computer analysis of kinematics of human gait, Comp. Biomed. Res., 5, 498, 1972.Google Scholar
  14. 14.
    Jarrett, M.O., A Television Computer System for the Analysis of Human Locomotion, Ph.D thesis, University of Strathclyde, Glasgow, 1975.Google Scholar
  15. 15.
    Cappozzo, A., Leo, T. and Pelotti, A., A general computing method for the analysis of human locomotion, J. Biomechanics, 8, 307, 1975.CrossRefGoogle Scholar
  16. 16.
    Lesh, M.D., Mansour, J.M. and Simon, S.R., A gait analysis sub-system for smoothing and differentiation of human motion data, J. Biomech. Eng., 101, 205, 1979.CrossRefGoogle Scholar
  17. 17.
    Andrews, B., Ph.D thesis under preparation, University of Strathclyde, Glasgow, 1980.Google Scholar
  18. 18.
    University of California Report, The Pattern of Muscular Activity in the Lower Extremity During Walking, University of California, Berkeley, 1953.Google Scholar
  19. 19.
    Seireg, A. and Arvikar, R.J., The prediction of muscular load sharing and joint forces in the lower extremities during walking, J. Biomechanics, 8, 89, 1975.CrossRefGoogle Scholar
  20. 20.
    Elfman, H., The function of arms in walking, Human Biol., 11, 529, 1939.Google Scholar
  21. 21.
    MacGregor, J., Rehabilitation ambulatory monitoring, in Disability, Kenedi, R.M., Paul, J.P., Hughes, J., Eds., Macmillan Press Ltd., London and Basingstoke, 159, 1979.Google Scholar
  22. 22.
    Beckett, R. and Chang, K., An evaluation of the kinematics of gait by minimum energy. J.Biomechanics, 1, 147, 1968.CrossRefGoogle Scholar
  23. 23.
    Chow, C.K. and Jacobson, D.H., Studies of human locomotion via optimal programming, Math. Biosci., 10, 239, 1971.CrossRefMATHGoogle Scholar
  24. 24.
    Hatze, H., The complete optimization of a human motion, Math. Biosci., 28, 99, 1976.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Contini, R. and Drillis, R.S., Body Segment Mass Properties, Tech. Report 1166.03, New York University, 1966.Google Scholar
  26. 26.
    Bresler, B. and Frankel, J.P., The forces and moments in the leg during level walking, ASME Trans., 72, 27, 1950.Google Scholar
  27. 27.
    Ryden, N.W., Forces acting on the femoral head prosthesis, Acta Ortho. Scand. Supplement, 80, 1966.Google Scholar
  28. 28.
    Chao, E.Y., Opgrande, J.D. and Axmear, F.E., Three dimensional force analysis of finger joints in selected isometric hand functions, J.Biomechanics, 9, 387, 1976.CrossRefGoogle Scholar
  29. 29.
    Paul, J.P., Forces at the Human Hip Joint, Ph.D thesis, University of Glasgow, 1967.Google Scholar
  30. 30.
    Berme, N., Paul, J.P. and Purves, W.K., A biomechanical analysis of the metacarpophalangeal joint, J. Biomechanics, 10, 409, 1976.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1980

Authors and Affiliations

  • Necip Berme
    • 1
  1. 1.Bioengineering UnitUniversity of StrathclydeRottenrow, GlasgowUK

Personalised recommendations