Blast Waves

The Flow Fields of Explosions
  • Antoni K. Oppenheim
Part of the International Centre for Mechanical Sciences book series (CISM, volume 48)


Blast waves are, essentially, non-steady flow fields generated by explosions. The development of the blast wave theory has been spearheaded by the interest in the effects of atom bombs, having been founded in the nineteen-forties upon such notable contributions as those of Taylor(1, 2)*, von Neumann(3, 4), Sedov(5, 6) and Stanyukovich(7, 8).


Flow Field Time Profile Blast Wave Autonomous Form Point Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, Sir Geoffrey, “The formation of a Blast Wave by a Very Intense Explosion”, first published in British Report RC-210, June 27, 1941;Google Scholar
  2. Taylor, Sir Geoffrey, “The formation of a Blast Wave by a Very Intense Explosion”, revised version in Proc. Roy. Soc., London, A201, Part I, pp. 159–174, Part II, pp. 175–186, March 1950.Google Scholar
  3. 2.
    Taylor, G.I., “The Air Wave Surrounding an Expanding Sphere”, Proc. Roy. Soc., London, A186, pp. 273–292, 1946.CrossRefMATHGoogle Scholar
  4. 3.
    Von Neumann, J., “The Point Source Solution”, first published in NDRC, Div. B. Report AM-9, June 30, 1941;Google Scholar
  5. Von Neumann, J, J., “The Point Source Solution”, then in Shock Hydrodynamics and Blast Waves (ed. H. A. Bethe) AECD-2860, 1944;Google Scholar
  6. Von Neumann, J., “The Point Source Solution”, revised version in Blast Waves (es. H.A. Bethe) Los Alamos Sci. Lab. Rep. LA-2000, 27–55, 1947;Google Scholar
  7. Von Neumann, J., “The Point Source Solution”, reprinted in John von Neumann Collected Works (ed. A.H. Taub), VI, pp. 219–237, Pergamon Press, New York, 1963.Google Scholar
  8. 4.
    Von Neumann, J., and Goldstine, H., “Blast Wave Calculation”, Com. Pure Appl. Math., 8, pp. 327–353, 1955;CrossRefMATHGoogle Scholar
  9. Von Neumann, J., and Goldstine, H., “Blast Wave Calculation”, reprinted in John Von Neumann Collected Works (ed. A.H. Taub), VI, pp. 386–412, Pergamon Press, New York, 1963.Google Scholar
  10. 5.
    Sedov, L.I., “Rasprostraneniye sil’nykh vzryvnykh voln” (Propagation of Intense Blast Waves), Priklednaya matematika i mekhanika (Applied Mathematics and Mechanics) 10, 2, 1946.Google Scholar
  11. 6.
    Sedov,L.I., “Rasprostraneniye sil’nykh vzryvnykh voln”, revised version in Similarity and Dimensional Method in Mechanics, Fourth Printing, Gostekhizdat, Moscow, 1947 (transl: M. Friedman, Ed.: M. Holt, Academic Press, New York,XVI + 363 pp., 1959 ).Google Scholar
  12. 7.
    Stanyukovich, K.P., “Application of Particular Solutions for Equations of Gasdynamics to the Study of Blast and Shock Waves”, Rep. Acad. Sci. USSR, 52, 7, 1946.Google Scholar
  13. 8.
    Stanyukovich, K.P., Unsteady Motion of Continuous Media, Moscow, Gostekhizdat, 1955 (English translation, ed. M. Holt, 1960, New York, Pergamon Press, XIII + 745 pp.).Google Scholar
  14. 9.
    Korobeinikov, V.P., Mil’nikova, N.S. and Ryazanov, Ye. V., The Theory of Point Explosion; Fizmatgiz, Moscow, 330 pp., 1961 (English translation, U.S. Dept. of Commerce, JPRS: 14, 334, CSO: 6961N, Washington, 556 pp., 1962 ).Google Scholar
  15. 10.
    Sakurai, A., “Blast Wave Theory”, Basic Develop-ments in Fluid Dynamics, I. (ed. M. Holt), Academic Press, New York pp. 309–375, 1965.Google Scholar
  16. 11.
    Courant, R. and Friedrichs, K.O., Supersonic Flow and Shock Waves, John Wiley and Sons, New York, XVI + 464 pp., 1948.Google Scholar
  17. 12.
    Zel’dovich, Ya.B. and Raizer, Yu P., Physics of Shock Waves and High-Temperature Hydro-dynamic Phenomena, 2nd ed., Izdatel’stuo Nauka, Moscow, 686 pp., 1966; (English translation, ed. W.D. Hayes and R.F. Probstein, Academic Press, New York, I, xxIV + 464 pp., II, xx IV + 465–916 pp., 1967 ).Google Scholar
  18. 13.
    Brode, H.L., “Numerical Solutions of Spherical Blast Waves”, J. Appl. Physics, 26, 6, 766–775, 1955.CrossRefMATHMathSciNetGoogle Scholar
  19. 14.
    Brode, H.L. “Gasdynamic Motion with Radiation: A General Numerical Method”, Astronautica Acta, 14, 5, 433–444, 1969.Google Scholar
  20. 15.
    Grigorian, S.S., “Cauchy’s Problem and the Prob-lem of a Piston for One-Dimensional Non-Steady Motions of a Gas”, J. Appl. Math. Mech., 22, 2, 187–197, 1958.CrossRefGoogle Scholar
  21. 16.
    Oshima, K., “Blast Waves Produced by Exploding Wires”, Exploding Wires, II (ed. W. Chace and H. Moore) Plenum Press, Ind., New York, pp. 159–174, 1962.Google Scholar
  22. 17.
    Korobeinikov, V.P. and Cuskin, P.I., “Plane, Cylindrical and Spherical Blast Waves in a Gas with Counter-Pressure”, Proc. V.A. Steklov Inst. of Math. (in Non-Steady Motion of Compressible Media Associated with Blast Waves”, ed. L.I. Sedov) Izdatel-stvo “Nauka”, Moscow, pp 4–33, 1966.Google Scholar
  23. 18.
    Levin, V.A. and Chernyi, G.G., “Asymptotic Laws of Behavior of Detonation Waves”, Prikladnaya Matematika i Mekhanika, 31, 3, 393–405, 1967.Google Scholar
  24. 19.
    Bishimov, E., Korobeinikov, V.P., Levin V.A. and Chernyi, G.G., “One dimensional Non-Steady Flow of Combustible Gas Mixtures Taking into Account Finite Rates of Chemical Reactions,” Proc. USSR Acad. Sci. 6, 7–19, 1968.Google Scholar
  25. 20.
    Korobeinikov, V.P., “The Problem of Point Explo-sion in a Detonating Gas”, Astronautica Acta, 14, 5, 411–420, 1969.Google Scholar
  26. 21.
    Laumbach, D.D. and Probstein, R.F., “A point Explo sion in a Cold Exponential Atmosphere”, J. Fluid Mech., 35, 1, 53–75, 1969.CrossRefGoogle Scholar
  27. 22.
    Lee, J.H., “Collapsing Shock Waves in a Detonating Gas”, Astro. Acta, 14, 7, 421–425, 1969.Google Scholar
  28. 23.
    Jeffrey, A. and Taniuiti, T., Non-linear Wave Pro-pagation with Applications to Physics and Magnitohydrodynamics, Academic Press, New York, IX + 369 pp., 1964.Google Scholar

Copyright information

© Springer-Verlag Wien 1970

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations