Gasdynamic Discontinuities

The Most Prominent Effects of Explosions
  • Antoni K. Oppenheim
Part of the International Centre for Mechanical Sciences book series (CISM, volume 48)


The most significant feature of flow fields generated by explosions is the existence of gasdynamic discontinuities. In the analysis they appear in the form of shocks waves, detonations and deflagrations, as well as some simple waves, especially rarefactions, that is continuous flow regions whose extent in the physical time-space domain is small enough, in comparison to the whole flow field under consideration, so that they can be treated effectively as discontinuities.


Mach Number Wave Interaction Incident Shock Shock Intersection Regular Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Courant, R. and Friedrichs, K.O., Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, XVI + 464 pp., 1948.Google Scholar
  2. 2.
    Oswatitsch, Klaus, Gas Dynamics, Academic Press Inc., New York, XV + 610 pp. and 3 charts, 1956.Google Scholar
  3. 3.
    Rudinger, George, Wave Diagrams for Nonsteady flow in Duts, D. Van Nostrand Company, Inc., New York, XI + 278 pp., 1955.Google Scholar
  4. 4.
    Glass, I.I. and Hall, J. Gordon, “Handbook of Su-personic Aerodynamics-Section 18-Shock Tubes, “Bureau of Ordnance, Department of the Navy, Navord Report 1488, 6, XXXVIII + 604 pp., 1959.Google Scholar
  5. 5.
    Shchelkin, K.I. and Troshin, Ya. K., Gazodynamika Gorenia (Gasdynamics of Combustion), Izdatelstvo Akademii Nauk SSSR, Moscow, 255 pp., 1963;Google Scholar
  6. Shchelkin, K.I. and Troshin, Ya. K., Transl. Mono Book Corp., Baltimore, VI + 222 pp., 1965.Google Scholar
  7. 6.
    Zel’dovich, Ya. B. and Rayzer, YU. P., Fizika Udarnykh Voln i Vysokotemperaturnykh Hidrodinamicheskikh Yavlenyi (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Gos. Izd. Fiz. Mat. Literatury, 686 pp., Moscow, 1963; (Transl., Edited by W. D. Hayes and R.F. Probstein), Academic Press, New York, I and II, XXIII + XXIV + 916 pp., 1966–67.Google Scholar
  8. 7.
    Jouguet, E., “Mécanique des Explosifs,” O. Doin et Fils, Paris, XX + 516 (esp. § 193, pp. 278–279), 1917.Google Scholar
  9. 8.
    Becker, R., “Stosswelle und Detonation,” Zeit-schrift für Physik, 8, 321–362 (esp. p. 352 ), 1922.Google Scholar
  10. Langweiler, H., “Beitrag zur Hydrodynamischen Deto-nationstheorie”., Zeitschrift für technische Physik, 19, 9, 271–283, 1938.Google Scholar
  11. 10.
    Murnaghan, F. D., Finite Deformation of an Elastic Solid, Wiley, New York, p. 68, 1951.Google Scholar
  12. 11.
    Oppenheim, A. K., Urtiew, P. A. and Laderman, A.J., “Vector Polar Method for the Evaluation of Wave Interaction Processes”, Archiwum Budowy Maszyn, XI, 3, 441–495, 1964.Google Scholar
  13. 12.
    Laderman, A.J., Urtiew, P.A. and Oppenheim, A.K., “Gasdynamic Effects of Shock-Flame Interactions in an Explosive Gas”, AIAA Journal, 3, 5, pp. 876–883, May 1965.CrossRefGoogle Scholar
  14. 13.
    Oppenheim, A.K., Smolen, J.J. and Zajac, L.J., “Vector Polar Method for the Analysis of Wave Intersections,” Combustion and Flame, 12, 1, 63–76, 1968.CrossRefGoogle Scholar
  15. 14.
    Oppenheim, A.K., Smolen, J.J., Kwak, D., Urtiew, P.A., “On the Dynamics of Shock Inter-sections,” Fifth Symposium(International) on Detonation, Pasadena, California, 17 pp., 1970.Google Scholar
  16. 15.
    Strehlow, R.A., “Gas Phase Detonations: Recent Developments” Combustion and Flame, 12, 2, pp. 81–101, April 1968.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1970

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations