Evolution of Gasdynamics of Explosions

The Dynamics of Exothermic Processes
  • Antoni K. Oppenheim
Part of the International Centre for Mechanical Sciences book series (CISM, volume 48)


Recent advances in the knowledge of blast wave phenomena, stemming from the pioneering work of Taylor (1)*, von Neumann (2)and Sedov (3), and exposed in a number of monographs (3–7), provided us with a new facility for the study of the mutual effects between shock waves and exothermic processes, such as those occurring in explosions or in supersonic flow fields supported by chemical or nuclear reactions. Classically, this branch of. science was associated with the studies of detonation waves that, significantly enough, have been initiated by the originator of the shock tube technique, Paul Vielle who, together with Berthelot(8), was credited by Mallard and Le Chatelier (9) with their “discovery”.


Shock Wave Detonation Wave Shock Tube Blast Wave AIAA Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, Sir Geoffrey, “The Formation of a Blast Wave by a Very Intense Explosion” first published in Bristish Report RC-210, June 27, 1941;Google Scholar
  2. Taylor, Sir Geoffrey, “The Formation of a Blast Wave by a Very Intense Explosion” revised version in Proc. Roy. Soc., London, A201, Part I, pp. 159–174, Part II, pp. 175–186, March 1950.Google Scholar
  3. 2.
    Von Neumann, J., “The Point Source Solution”, first published in NDRC, Div. B. Rept. AM-9, June 30, 1941;Google Scholar
  4. Von Neumann, J, J., “The Point Source Solution”, then in Shock Hydrodynamics and Blast Waves (ed. H.A. Bethe) AECD-2860, 1944;Google Scholar
  5. Von Neumann, J, J., “The Point Source Solution”, revised version in Blast Waves (ed. H.A. Bethe) Los Alamos Sci. Lab. Rep. LA-2000, 27–55, 1947;Google Scholar
  6. Von Neumann, J., “The Point Source Solution”, reprinted in John von Neumann Collected Works (ed. A.H. Taub), VI, 219–237, Pergamon Press, New York, 1963.Google Scholar
  7. 3.
    Sedov, L.I., “Rasprostraneniye sil’nykh vzryvnykh voln” (Propagation of Intense Blast Waves), Priklednaya matematika i mekhanika (Applied Mathematics and Mechanic, 10, 2, 1946;Google Scholar
  8. Sedov, L.I, L.I., “Rasprostraneniye sil’nykh vzryvnykh voln” revised version in Similarity and Dimensional Method in Mechan ics, Fourth Printing, Gostekhizdat, Moscow, 1957 (Transl.:M.Friedman, Ed.: M. Holt, Academic Press, New York, 363 pp., 1959 ).Google Scholar
  9. 4.
    Stanyukovich, K.P., Neustanovivschiyesya dvizheniya splshnoy sredy (Unsteady Motions of Con tinuous Media), Gostekhizdat, Moscow, 1955;Google Scholar
  10. Transi.: J.G. Adashko, Ed.: M. Holt, Pergamon Press, 745 pp., London 1960 ).Google Scholar
  11. 5.
    Korobeynikov, V.P., Mil’nikiva, N.S. and Ryazanov, Ye. V., Teoriya Tochechnovo Vzryva (The Theory of Point Explosions), Moscow, 1961, 332 pp. (Transi.: U.S. department of Commerce, JPSR: 14, 334, Washington, D.C., July 1962 ).Google Scholar
  12. 6.
    Sakurai, Akira, “Blast Wave Theory,” Basic Developments in Fluid Dynamics (Ed.: M. Holt), I, 309–375, Academic Press, New York 1965.Google Scholar
  13. 7.
    Zel’dovich, Ya. B. and Raizer, Yu. P., Fizika Udarnykh Voln i Vyskotemperaturnikh Hidrodinamicheskikh Yavlenii (Physics of Shocks Waves and High Temperature Hydrodynamic Phenomena), Gos. Izd. Fiz. Mat. Literatury, 632 pp., Moscow, 1963; (Transi., ed. by W.D. Hayes and R.F. Probstein, Academic Press, 916 pp. New York, 1966–67).Google Scholar
  14. 8.
    Berthelot, M. and Vielle, P., “Sur la Vitesse de propagation des phénomènes explosifs dans les gaz,” C.R. Acad. Sc., Paris, 94, 101–108, séance du 16 Janvier, 1882;Google Scholar
  15. Berthelot, M. and Vielle, P, P., “Sur la Vitesse de propagation des phénomènes explosifs dans les gaz,” C.R. Acad. Sc., Paris, 94, 822–823, séance du 27 Mars, 1882;Google Scholar
  16. Berthelot, M. and Vielle, P, P., “Sur la Vitesse de propagation des phénomènes explosifs dans les gaz,” C.R. Acad. Sc., Paris, 95, 151–157, séance du 24 Juillet, 1882.Google Scholar
  17. 9.
    Mallard, E. and Le Chatelier, H., “Recherches Expé-rimentales et Théoriques sur la Com-bustion des Mélanges Gaseux Explosifs”, Ann. Mines, 8, 4, 274–568, 1883.Google Scholar
  18. 10.
    Hirschfelder, J.O. and Curtiss, C.F., “Theory of Detonation, I. Irreversible Unimolec. 84 Chap. 2–References ular Reaction,” J. Chem. Phys., 28, 6 pp. 1130–1147, June 1958;CrossRefMathSciNetGoogle Scholar
  19. Hirschfelder, J.O. and Curtiss, C.F., “Theory of Detonation, II (with Linder, B.), J. Chem. Phys., 28, 6, 1147–1151, June 1958;CrossRefMathSciNetGoogle Scholar
  20. Hirschfelder, J.O. and Curtiss, C.F., “Theory of Detonation, III (with Barnett, M.P.), J. Chem. Phys., 30, 2, 470–492, February 1959.CrossRefMathSciNetGoogle Scholar
  21. 11.
    Wood, W.W. and Salsburg, Z.W., “Analysis of Steadx State Supported One-Dimensional Detona tions and Shocks,” Phys. Fluids, 3, 4, 549–566, July-August, 1960;MATHMathSciNetGoogle Scholar
  22. Wood, W.W., “Existence of Detonations for Small Values of the Rate Parameter,” Phys. Fluids, 4, 1, 46–60, January 1961.CrossRefMATHMathSciNetGoogle Scholar
  23. 12.
    Erpenbeck, Jerome J., “Two-Reaction Study Detona-tions,” Phys. Fluids, 4, 4, 481–492, April 1961;CrossRefMATHMathSciNetGoogle Scholar
  24. Erpenbeck, Jerome J., “Structure and Stability of the Square-Wave Detonation,” Ninth Symposium (International) on Combustion; 442–450, The Combustion Institute, Academic Press, New York 1963.Google Scholar
  25. 13.
    Oppenheim, A.K. and Rosciszewski, J., “Determina-tion of the Detonation Wave Structure,” Ninth Symposium (International) on Combustion, 424–434, The Combustion Institute, Academic Press, New York 1963.Google Scholar
  26. 14.
    White, D.R., “Turbulent Structure of Gaseous Detonation,” Phys. Fluids, 4, 465–480, April 1961.CrossRefMATHGoogle Scholar
  27. 15.
    Shchelkin, K.K. and Troshin, Ya.K., Gazodinamika Goreniya (Gasdynamics of Combustion), Izs Akad Nauk SSSR, 255pp., Moscow, 1964 (Transi. NASA TTF-231, 1963, and Mono Book Corp., Baltimore, 1965 ).Google Scholar
  28. 16.
    Soloukhin, R.I., Udarnye Volny i Detonatsii v Gazakh (Shock Waves and Detonation in Gases), Gos.Izd.Fiz.Mat. Literatury, 175 pp., Moscow, 1963; (Transi.: B.W. Kuvshinovv, Mono Book Corp., Baltimore, 1966 ).Google Scholar
  29. 17.
    Voitsekhovsky, B.V., Mitrofanov, V.V. and Topchian, M.E., Struktura Fronta Detonatsii v Gazakh (Structure of Detonation Fronts in Gases), Izd.Sib.Otd.A.N.SSSR, 168 pp., Novosibirsk, 1963.Google Scholar
  30. 18.
    Strehlow, R.A., “Gas Phase Detonations:Recent Devel opments,” Combustion and Flame, 12, 2, 81–101, April 1968.CrossRefGoogle Scholar
  31. 19.
    White, D.R. (With Cary, K.H.), “Structure of Gaseous Detonation, II. Generation of Laminar Detonation,” Phys.Fluids, 6, 5, 749–750, May 1963;CrossRefGoogle Scholar
  32. White, D.R. (With Cary, K.H.), “Structure of Gaseous Detonation, III. “Density in the Induction Zone of Hydrogen Detonation,” Phys. Fluids, 6, 7, 1011–1015, July 1963.CrossRefGoogle Scholar
  33. 20.
    Lundstrom, E.A. and Oppenheim, A.K., “On the In-fluence of Non-stediness on the Thickness of the Detonation Wave,” Proc. Roy. Soc., A 301, 463–478, 1969.CrossRefGoogle Scholar
  34. 21.
    Glass, I.I., “Aerodynamics of Blast,” Canadian Aeronautical Journal, 7, 3, 109–135, March 1961.MathSciNetGoogle Scholar
  35. 22.
    Boyer, D.W., “An Experimental Study of the Explo-sion Generated by a Pressurized Sphere,” J. Fluid Mech., 9, Part 3, 401–429, 1960.Google Scholar
  36. 23.
    Oshima, K., “Blast Waves Produced by Exploding Wires,” Exploding Wires, 2, 159–174 (Chace, W. and Moore, H., Ed.); Plenum Press, Inc., New York, 1962.Google Scholar
  37. 24.
    Ramsden, S.A. and Savic, P., “A Radiative Detonation Model for the Development of a Laser-Induced Spark in Air,” Nature, 203, 1217–1219, September 19, 1964.Google Scholar
  38. 25.
    Lee, John H. and Knystautas, R., “Laser Spark Ignition of Chemically Reactive Gases,” AIAA Paper No. 68–146, AIAA 6th Aerospace Sciences Meeting, New York, January 22–24, 1968.Google Scholar
  39. 26.
    Back, G.G., Knystautas, R. and Lee, J.H., “Direct Initiation of Spherical Detonations in Gaseous Explosives,” Proc. Twelfth Symposium (International) on Combustion, Poitiers, France, July 14–20, 1968.Google Scholar
  40. 27.
    Soloukhin, R.I. and Ragland, K.W., “Ignition Processes in Expanding Detonations,” Combustion and Flame, 13, 3, 295–302, June 1969.CrossRefGoogle Scholar
  41. 28.
    Riemann, B., “Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,” Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Götingen, 8, 43–65, 1859.Google Scholar
  42. 29.
    Friedrichs, K.O., “Formation and Decay of Shocks Waves,” Communications on Applied Mathematics, 1, 3, 211–245, September 1948.CrossRefMATHMathSciNetGoogle Scholar
  43. 30.
    Chu, B.T., “On the Generation of Pressure Waves at a Plane Flame Front,” Fourth Symposium (International) on Combustion, 603–612, The Williams & Wilkins Co., Baltimore, 1953;Google Scholar
  44. Chu, B.T, B.T., “Mechanism of Generation of Pressure Waves at Flame Fronts,” NACA TN 3683, 20 pp., 1956.Google Scholar
  45. 31.
    Jones, H., “Accelerated Flames and Detonation in Gases”, Proc. Roy. Soc., A248, 1254, 333–349, 1958.CrossRefMATHGoogle Scholar
  46. 32.
    Laderman, A.J. and Oppenheim, A.K., “Initial Flame Acceleration in an Explosive Gas,” Proc. Roy. Soc., A268, 153–180, 1962.CrossRefGoogle Scholar
  47. 33.
    Urtiew, P.A., Laderman, A.J. and Oppenheim, A.K., “Dynamics of the Generation of Pressure Waves by Accelerating Flames,” Tenth Symposium (International) on Combustion, 797–804, The Combustion Institute, Pittsburgh, Pa 1965.Google Scholar
  48. 34.
    Voevodsky, V.V. and Soloukhin, R.I., “On the Mechanism and Explosion Limits of Hydrogen-Oxygen Chain Self-Ignition in Shock Waves,” Tenth Symposium (International) on Combustion, 279–283, The Combustion Institute, Pittsburgh, Pa., 1965.Google Scholar
  49. 35.
    Strehlow, Roger A. (with Cohen, Arthur), “Initiation of Detonation”, Phys. Fluids, 5, 1, 97–101, January 1962; (with Dyner, Harry B.), One-Dimensional Detonation Initiation,” AIAA Journal, 1, 3, 591–595, March 1963.Google Scholar
  50. 36.
    Gilbert, R.B. and Strehlow, R.A., “Theory of Detonation Initiation Behind Reflected Shock Waves,” AIAA Journal, 4, 10, 1966.CrossRefGoogle Scholar
  51. 37.
    Barthel, H.O. and Strehlow, R.A., “Wave Propagation in One-Dimensional Reactive Flows,” Phys. Fluids, 9, 10, 1966.Google Scholar
  52. 38.
    Perry, Robert W. and Kantrowitz, Arthur, “The Production and Stability of Converging Shock Waves”, J.Appl. Phys., 22, 7, 878–886, July, 1951.Google Scholar
  53. 39.
    Daiber, J.W., Hertzberg, A. and Wittliff, C.E., “Laser-Generated Implosions”, Phys. Fluids, 9, 3, 617–619, March 1966.CrossRefGoogle Scholar
  54. 40.
    Lee, J.H., Lee B.H.K. (With Shanfield, I.), “Two-Dimensional Unconfined Gaseous Detonation Waves,” Tenth Symposium (international) on Combustion, 805–815, The Combustion Institute, Pittsburg, Pa., 1965, “Cylindrical Imploding Shocks Waves,” Phys. Fluids, 8, 12, 2148–2152, December, 1965.Google Scholar
  55. 41.
    Lee, B.H.K., “Nonuniform Propagation of Imploding Shocks and Detonations”, AIAA Journal, 5, 11, 1997–2003, November 1967.CrossRefMATHGoogle Scholar
  56. 42.
    Knystautas, R., Lee, B.H.K. and Lee, J.H., “Diagros tic Experiments on Converging Detona-tions,” Proceedings of the 6th Interna-tional Shock Tube Symposium, Phys. Fluids Supplement, 12, 5, 1165–1168, May-1969.Google Scholar
  57. 43.
    Lee, J.H., “Collapsing Shock Waves in a Detonating Gas”, Proceedings of the First Interna-tional Colloquium on Gasdynamics of Ex-plosions, Astronautica Acta, 14, 5, 421–425, 1969.Google Scholar
  58. 44.
    Knystautas, R. and Lee, J.H., “Experiments on the Stability of Converging Cylindrical Detonations,” Presented at the 1968 Annual Meeting of the A.P.S. Division of Fluid Dynamics, to be published in Phys. Fluids.Google Scholar
  59. 45.
    Strehlow, R.A., Crooker, A.J. and Cusey, R.E., “Detonation Initiation Behind an Accelerating Shock Wave”, Combustion and Flame, 11, 4, 339–351, August 1967.CrossRefGoogle Scholar
  60. 46.
    Glass, I.I., “Research Frontiers at Hypervelocities”, Canadian Aeronautics and Space Journal, 13, 8, 347–366 and 9, 1638–1645, September 1966.Google Scholar
  61. 47.
    Flagg, R.F. and Glass, I.I., “Explosive-Driven, Spherical Implosion Waves”, Phys. Fluids, 11, 10, 2282–2284, 1968.CrossRefGoogle Scholar
  62. 48.
    Busch, C.W., Laderman, A.J. and Oppenheim, A.K., “Pressure Wave Generation in Particle-Fueled Combustion Systems: I. Parametric Study”, AIAA Journal, 4, 9, 1638–1645, September 1966.CrossRefGoogle Scholar
  63. 49.
    Busch, C.W., Warnock, A.S., Laderman, A.J. and Oppenheim, A.K., “Pressure Wave Generation in Particle-Fueled Combustion Systems:II. Influence of Particle Motion,” AIAA Journal, 6, 2, 286, 291, February 1968.Google Scholar
  64. 50.
    Smith, H.P., Jr., Busch, C.W. and Oppenheim, A.K. “Pressure Wave Generated in a Fissionable Gas by Neutron Irradiation,” Phys. Fluids, 7, 5, 676–683, May 1964.CrossRefGoogle Scholar
  65. 51.
    Podney, W.N., Smith, Harold P., Jr., and Oppenheim, A.K., “On the Generation of Pressure Waves in Fissioning Gases”, Proceed-ings, XXXVI International Congress of Industrial Chemistry, Brussels, 1966; Gr. IV, S. 12–406, 1968.Google Scholar
  66. 52.
    Podney, W.N., Smith, H.P., Jr., and Oppenheim, A.K. “On the Generation of a Fissioning Plasma in a Shock Tube”, Proceedings of the 6th International Shock Tube Symposium, Phys. Fluids Supplement, 12, 5. 168–172, May 1969.Google Scholar
  67. 53.
    Zajac, L.J. and Oppenheim, A.K., “Dynamics of an Explosive Reaction Center,” Combustion and Flame (in press).Google Scholar
  68. 54.
    Gross, R.A., “Research on Supersonic Combustion”, ARS Journal, 29, 1, 63–64, January 1959.Google Scholar
  69. 55.
    Nicholls, J.A., “Standing Detonation Waves”, Ninth Symposium (International) on Combustion, 488–496, The Combustion Institute, Academic Press, New York 1963.Google Scholar
  70. 56.
    Richmond, J. Kenneth and Shreeve, Raymond P., “Wind-Tunnel Measurements of Ignition Delay Using Shock-Induced Combustion”, AIAA Journal, 5, 10, 1777–1784, October 1967.CrossRefGoogle Scholar
  71. 57.
    Ruegg, F.W. and Dorsey, W.W., “A Missile Techni-que for the Study of Detonation Waves”, J. Research, Natl. Bureau of Standards, 66C, 51–58, 1962.Google Scholar
  72. 58.
    Behrens, H., Struth, W. and Wecken, F., “Studies of Hypervelocity Firings into Mixtures of Hydrogen with Air or with Oxygen”, Tenth Symposium (International) on Com-bustion, 245–252, The Combustion Institute, Pittsburgh, Pa., 1965.Google Scholar
  73. 59.
    Chernyi, G.G., “Supersonic Flow Around Bodies with Detonation and Deflagration Fronts,” Astronautica Acta, 13, 5 and 6, 467–480, August 1968.Google Scholar
  74. 60.
    McVey, J.B. and Toong, T.Y., “Mechanism of Insta bilities of Exothermic Hypersonic Blunt-Flows”, (in preparation for publication; so far a available only in the D. Sc. Thesis of McVey).Google Scholar
  75. 61.
    Schott, G.L. and Kinsey, J.L., “Kinetic Studies of Hydroxyl Radicals in Shock Waves, H. Induction Times in the Hydrogen-Oxygen Reaction”, J. Chem. Phys., 29, 1179–1182, 1958.CrossRefGoogle Scholar
  76. 62.
    Skinner, G.B. and Ringrose, G.H., “Ignition Delays of a Hydrogen-Oxygen-Argon Mixture at Relatively Low Temperatures”, J. Chem. Phys., 42, 2190–2192, 1965.CrossRefGoogle Scholar
  77. 63.
    Wakefield, C.B., Ripley, D.L. and Gardiner, W.C., “Chemical Kinetics of the Shock-Initia ted Combustion of Hydrogen at High Pressure and Low Temperature”, J. Chem. Phys., 50, 325–332, 1969.CrossRefGoogle Scholar
  78. 64.
    Getzinger, R.W. and Schott, G.L., “Recombination via the H + O + M HO + M Reaction in Lean Hydrogen-Oxygen Mixtures”, J. Chem. Phys., 43, 1965.Google Scholar
  79. 65.
    Getzinger, R.W. and Blair, L.S., “Recombination in the Hydrogen-Oxygen Reaction: A Shock Tube Study with Nitrogen and Water Vapor as Third Bodies”, Combustion and Flame, 13, 3, 271–284, 1969.CrossRefGoogle Scholar
  80. 66.
    Oppenheim, A.K., Lundstrom, E.A. and Kamel, M.M. “A Systematic Exposition of the Con-servation Equations for Blast Waves”, to be published in the Journal of Ap-plied Mechanics.Google Scholar

Copyright information

© Springer-Verlag Wien 1970

Authors and Affiliations

  • Antoni K. Oppenheim
    • 1
  1. 1.University of CaliforniaUSA

Personalised recommendations