Modelling and Control of Nonholonomic Mechanical Systems

  • A. De Luca
  • G. Oriolo
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 360)


The goal of this chapter is to provide tools for analyzing and controlling nonholonomic mechanical systems. This classical subject has received renewed attention because nonholonomic constraints arise in many advanced robotic structures, such as mobile robots, space manipulators, and multifingered robot hands. Nonholonomic behavior in robotic systems is particularly interesting, because it implies that the mechanism can be completely controlled with a reduced number of actuators. On the other hand, both planning and control are much more difficult than in conventional holonomic systems, and require special techniques. We show first that the nonholonomy of kinematic constraints in mechanical systems is equivalent to the controllability of an associated control system, so that integrability conditions may be sought by exploiting concepts from nonlinear control theory. Basic tools for the analysis and stabilization of nonlinear control systems are reviewed and used to obtain conditions for partial or complete nonholonomy, so as to devise a classification of nonholonomic systems. Several kinematic models of nonholonomic systems are presented, including examples of wheeled mobile robots, free-floating space structures and redundant manipulators. We introduce then the dynamics of nonholonomic systems and a procedure for partial linearization of the corresponding control system via feedback. These points are illustrated by deriving the dynamical models of two previously considered systems. Finally, we discuss some general issues of the control problem for nonholonomic systems and present open-loop and feedback control techniques, illustrated also by numerical simulations.


Mobile Robot Multibody System Kinematic Model Kinematic Constraint Nonholonomic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Latombe, J.-C.: Robot Motion Planning, Kluwer Academic Publishers, Boston 1991.CrossRefGoogle Scholar
  2. 2.
    Sordalen, O. J., Y. Nakamura and W. J. Chung: Design of a nonholonomic manipulator, Proc. 1994 IEEE Int. Conf. on Robotics and Automation, San Diego, 1994, 8–13.CrossRefGoogle Scholar
  3. 3.
    Campion, G., G. Bastin, D. Rolin and B. Raucent: External linearization control for an omnidirectional mobile robot, Prep. 2nd IFAC Symp. on Robot Control, Karlsruhe, 1988, 71.1–71.6.Google Scholar
  4. 4.
    Isidori, A.: Nonlinear Control Systems, 2nd Edition, Springer-Verlag, Berlin 1989.CrossRefMATHGoogle Scholar
  5. 5.
    Nijmeijer, H. and A. van der Schaft: Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin 1990.CrossRefMATHGoogle Scholar
  6. 6.
    Helgason, S.: Differential Geometry and Symmetric Spaces, Academic Press, New York 1962.MATHGoogle Scholar
  7. 7.
    Sussmann, H. J.: Local controllability and motion planning for some classes of systems with drift, Proc. 30th IEEE Conf. on Decision and Control Brighton, 1991, 1110–1114.Google Scholar
  8. 8.
    Sussmann, H. J.: A general theorem on local controllability, SIAM J. on Control and Optimization, 25 (1987), 158–194.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Sontag, E. D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, Spinger-Verlag, New York 1990.CrossRefMATHGoogle Scholar
  10. 10.
    Irwin, M. C.: Smooth Dynamical Systems, Academic Press, London 1980.MATHGoogle Scholar
  11. 11.
    Brockett, R. W.: Asymptotic stability and feedback stabilization, in: Differential Geometric Control Theory (Eds. R. W. Brockett. R. S. Millman and H. J. Sussmann), Birkhäuser, Boston 1983, 181–191.Google Scholar
  12. 12.
    Laumond, J.-R.: Singularities and topological aspects in nonholonomic motion planning, in: Nonholonomic motion planning (Eds. Z. Li and J. F. Canny), Kluwer Academic Publishers, Boston 1993, 149–199.CrossRefGoogle Scholar
  13. 13.
    Gershkovich, V. and A. Vershik: Nonholonomic distributions and nilpotent analysis, J. of Geometry and Physics, 5 (1988), 407–452.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Alexander, J. C. and J. H. Maddocks: On the kinematics of wheeled mobile robots, Int. J. of Robotics Research, 8 (1989). 5, 15–27.CrossRefGoogle Scholar
  15. 15.
    Barraquand, J. and J.-C. Latombe: On nonholonomic mobile robots and optimal maneuvering, Proc. 4th IEEE Int. Symp. on Intelligent Control Albany, 1989, 340–347.Google Scholar
  16. 16.
    Laumond, J.-P.: Nonholonomic motion planning versus controllability via the multibody car system example, Tech. Rep. STAN-CS-90–1345, Stanford University, Dec. 1990.Google Scholar
  17. 17.
    Laumond, J.-P. and T. Simeon: Motion planning for a two degrees of freedom mobile robot with towing, Tech. Rep. 89–149, LAAS-CNRS, Apr. 1989.Google Scholar
  18. 18.
    Campion, G., B. d’Andrea-Novel and G. Bastin: Modelling and state feedback control of nonholonomic mechanical systems, Proc. 30th IEEE Conf. on Decision and Control, Brighton, 1991, 1184–1189.Google Scholar
  19. 19.
    Li, Z. and J. Canny: Motion of two rigid bodies with rolling constraint, IEEE Trans, on Robotics and Automation, 6 (1990), 62–71.CrossRefGoogle Scholar
  20. 20.
    Murray, R. M., Z. Li and S. S. Sastry.: A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton 1994.MATHGoogle Scholar
  21. 21.
    Bicchi, A. and R. Sorrentino: Dextrous manipulation through rolling, to appear in Proc. 1995 IEEE Int. Conf. on Robotics and Automation, Nagoya, May 1995.Google Scholar
  22. 22.
    Longman, R. W., R. E. Lindberg and M. F. Zedd: Satellite mounted robot manipulators — New kinematics and reaction moment compensation, Int. J. of Robotics Research, 6 (1987), 3, 87–103.CrossRefGoogle Scholar
  23. 23.
    Umetani, Y. and K. Yoshida: Resolved motion rate control of space manipulators with generalized jacobian matrix, IEEE Trans, on Robotics and Automation, 5 (1989), 303–314.CrossRefGoogle Scholar
  24. 24.
    Vafa, Z. and S. Dubowsky: The kinematics and dynamics of space manipulators: the virtual manipulator approach, Int. J. of Robotics Research, 9 (1990), 4, 3–21.CrossRefGoogle Scholar
  25. 25.
    Reyhanoglu, M. and N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum, Proc. 1991 AIAA Guidance, Navigation, and Control Conf., New Orleans, 1991, 1330–1340.Google Scholar
  26. 26.
    Reyhanoglu, M. and N. H. McClamroch: Controllability and stabilizability of planar multibody systems with angular momentum preserving control torques, Proc. 1991 American Control Conf., Boston, 1991, 1102–1107.Google Scholar
  27. 27.
    Bloch, A. M., M. Reyhanoglu and N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems, IEEE Trans, on Automatic Control, 37 (1992), 1746–1757.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Nakamura, Y. and R. Mukherjee: Nonholonomic path planning of space robots via a bidirectional approach, IEEE Trans, on Robotics and Automation, 7 (1991), 500–514.CrossRefGoogle Scholar
  29. 29.
    Frohlich, C.: Do springboard divers violate angular momentum conservation?, Amer. J. of Physics, 47 (1979), 583–592.CrossRefGoogle Scholar
  30. 30.
    Kane, T. R. and M. P. Scher: Human self-rotation by means of limb movements, J. of Biomechanics, 3 (1970), 39–49.CrossRefGoogle Scholar
  31. 31.
    Li, Z. and R. Montgomery: Dynamics and optimal control of a legged robot in flight phase, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 129–134.Google Scholar
  32. 32.
    Crouch, P. E.: Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models, IEEE Trans, on Automatic Control, 29 (1984), 321–331.CrossRefMATHGoogle Scholar
  33. 33.
    Walsh, G. C. and S. S. Sastry: On reorienting linked rigid bodies using internal motions, Proc. 30th IEEE Conf. on Decision and Control, Brighton, 1991, 1190 – 1195.Google Scholar
  34. 34.
    De Luca, A. and G. Oriolo: Nonholonomy in redundant robots under kinematic inversion, Proc. 4th IFAC Symp. on Robot Control Capri, 1994, 179–184.Google Scholar
  35. 35.
    Nakamura, Y. and S. Savant: Nonholonomic motion control of an autonomous underwater vehicle, Proc. IEEE/RSJ Int. Work, on Intelligent Robots and Systems, Osaka, 1991, 1254–1259.Google Scholar
  36. 36.
    Egeland, O., E. Berglund and O. J. Sordalen: Exponential stabilization of a nonholonomic underwater vehicle with constant desired configuration. Proc. 1994 IEEE Int. Conf. on Robotics and Automation, San Diego, 1994. 20–26.Google Scholar
  37. 37.
    Hauser, J. and R. M. Murray: Nonlinear controllers for non-integrable systems: The Acrobot example, Proc. 1990 American Control Conf., San Diego, 1990. 669–671.Google Scholar
  38. 38.
    Oriolo, G. and Y. Nakamura: Control of mechanical systems with second-order nonholonomic constraints: Underactuated manipulators. Proc. 30th IEEE Conf. on Decision and Control, Brighton, 1991. 2398–2403.Google Scholar
  39. 39.
    Arai, H. and S. Tachi: Position control system of a two degree of freedom manipulator with a passive joint, IEEE Trans, on Industrial Electronics, 38 (1991), 15–20.CrossRefGoogle Scholar
  40. 40.
    Laumond, J.-P.: Controllability of a multibody mobile robot. IEEE Trans, on Robotics and Automation, 9 (1993), 755–763.CrossRefGoogle Scholar
  41. 41.
    Sordalen, O. J.: Conversion of the kinematics of a car with n trailers into a chained form, Proc. 1993 IEEE Int. Conf. on Robotics and Automation, Atlanta, 1993, 1, 382–387.Google Scholar
  42. 42.
    Risler, J.-J. and F. Luca: The maximum of the degree of nonholonomy for the car with n trailers, Proc. 4th IFAC Symp. on Robot Control, Capri. 1994, 165–170.Google Scholar
  43. 43.
    Sreenath, N.: Nonlinear control of multibody systems in phase space, Proc. 1990 IEEE Int. Conf. on Robotics and Automation, Cincinnati, 1990, 1776–1781.Google Scholar
  44. 44.
    Angeles, J.: Rational Kinematics, Springer-Verlag, New York 1988.CrossRefMATHGoogle Scholar
  45. 45.
    Boullion, T. L. and P. L. Odell: Generalized Inverse Matrices, Wiley-Interscience, New York 1971.MATHGoogle Scholar
  46. 46.
    Shamir, T. and Y. Yonidin: Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Trans, on Automatic Control, 33 (1988), 1004–1009.CrossRefMATHGoogle Scholar
  47. 47.
    Anderson, K. and J. Angeles: Kinematic inversion of robotic manipulators in the presence of redundancies, Int. J. of Robotics Research, 8 (1989), 6, 80–97.CrossRefGoogle Scholar
  48. 48.
    De Luca, A., L. Lanari and G. Oriolo: Control of redundant robots on cyclic trajectories, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 500–506.Google Scholar
  49. 49.
    Roberts, R. G. and A. A. Maciejewski: Nearest optimal repeatable control strategies for kinematically redundant manipulators, IEEE Trans, on Robotics and Automation, 8 (1992), 327–337.CrossRefGoogle Scholar
  50. 50.
    Marsden, J., R. Montgomery and T. Ratiu: Reduction, Symmetry, and Phases in Mechanics. Memoirs of the Amer. Math. Society, 88, 436, American Mathematical Society, Providence 1990.MathSciNetGoogle Scholar
  51. 51.
    Goldstein, H.: Classical Mechanics, Addison-Wesley, Reading 1980.MATHGoogle Scholar
  52. 52.
    Neimark, J. I. and F. A. Fufaev: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, 33, American Mathematical Society, Providence 1972.Google Scholar
  53. 53.
    d’Andrea-Novel, B. G. Bastin and G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 2527–2532.Google Scholar
  54. 54.
    Murray, R. M. and S. S. Sastry: Nonholonomic motion planning: Steering using sinusoids, IEEE Trans, on Automatic Control, 38 (1993), 700–716.CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Murray, R. M.: Control of nonholonomic systems using chained forms, Fields Institute Communications, 1 (1993), 219–245.Google Scholar
  56. 56.
    Tilbury, D., R. M. Murray and S. S. Sastry: Trajectory generation for the N-trailer problem using Goursat normal form, Memo. UCB/ERL M93/12, University of California at Berkeley, Feb. 1993.Google Scholar
  57. 57.
    Kolmanovsky, I. V., M. Reyhanoglu and N. H. McClamroch: Discontinuous feedback stabilization of nonholonomic systems in extended power form, Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, 1994, 3469–3474.Google Scholar
  58. 58.
    Brockett, R. W.: Control theory and singular Riemannian geometry, in: New Directions in Applied Mathematics, Springer-Verlag, New York 1991, 11–27.Google Scholar
  59. 59.
    Tilbury, D., S. S. Sastry, R. M. Murray, J.-P. Laumond and G. Walsh: Steering carlike systems with trailers using sinusoids, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 1993–1998.Google Scholar
  60. 60.
    Sussmann, H. J. and W. Liu: Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories, Tech. Rep. SYCON-91–102, Rutgers University, 1991.Google Scholar
  61. 61.
    Monaco, S. and D. Normand-Cyrot: An introduction to motion planning under multirate digital control, Proc. 31st IEEE Conf. on Decision and Control Tucson. 1992, 1780–1785.Google Scholar
  62. 62.
    Lafferriere, G. and H. J. Sussmann: Motion planning for controllable systems without drift, Proc. 1991 IEEE Int. Conf. on Robotics and Automation. Sacramento. 1991, 1148–1153.Google Scholar
  63. 63.
    Bloch, A. M., N. H. McClamroch and M. Reyhanoglu: Controllability and stabi-lizability properties of a nonholonomic control system. Proc. 29th IEEE Conf. on Decision and Control, Honolulu, 1990, 1312–1314.Google Scholar
  64. 64.
    Canudas de Wit, C. and O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Trans, on Automatic Control 37 (1992), 1791–1797.CrossRefMATHGoogle Scholar
  65. 65.
    Samson, C.: Preliminary results on time-varying feedback stabilization of a nonholonomic car-like mobile robot, Res. Rep. 1512. INRIA-Sophia Antipolis. Sep. 1991.Google Scholar
  66. 66.
    Samson, C.: Time-varying feedback stabilization of a car-like wheeled mobile robot, Int. J. of Robotics Research, 12 (1993). 1. 55–64.CrossRefMathSciNetGoogle Scholar
  67. 67.
    Canudas de Wit, C., H. Khennouf, C. Samson and O. J. Sordalen: Nonlinear control design for mobile robots. Tech. Rep. 93–075, Laboratoire d’Automatique de Grenoble, ENSIEG, Jul. 1993.Google Scholar
  68. 68.
    Coron, J.-M.: Global asymptotic stabilization for controllable nonlinear systems without drift, Math, of Control Signals, and Systems, 5 (1992), 295–312.CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Pomet, J.-B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Lett 18 (1992), 147–158.CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Pomet, J.-B., B. Thuilot, G. Bastin and G. Campion: A hybrid strategy for the feedback stabilization of nonholonomic mobile robots, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 129–134.Google Scholar
  71. 71.
    Samson, C.: Mobile robot control, part 2: Control of chained systems, application to path following and time-varying point-stabilization of wheeled vehicles, Res. Rep. 1994, INRIA-Sophia Antipolis, Jul. 1993.Google Scholar
  72. 72.
    Pomet, J.-B. and C. Samson: Time-varying exponential stabilization of nonholonomic systems in power form, Res. Rep. 2126, INRIA-Sophia Antipolis, Dec. 1993.Google Scholar
  73. 73.
    Teel, A., R. M. Murray and G. Walsh: Nonholonomic control systems: From steering to stabilization with sinusoids, Proc. 31th IEEE Conf. on Decision and Control, Tucson, 1992,1603–1609.Google Scholar
  74. 74.
    Sørdalen, O. J.: Feedback control of nonholonomic mobile robots, Tech. Rep. 93–5-W, The Norwegian Institute of Technology, 1993.Google Scholar
  75. 75.
    De Luca, A. and M. D. Di Benedetto: Control of nonholonomic systems via dynamic compensation, Kybernetica, 29 (1993), 593–608.MATHGoogle Scholar
  76. 76.
    Laumond, J.-P., P. E. Jacobs, M. Taïx and R. M. Murray: A motion planner for nonholonomic mobile robots, IEEE Trans, on Robotics and Automation, 10 (1994), 577–593.CrossRefGoogle Scholar
  77. 77.
    Samson, C. and K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space, Proc. 1991 IEEE Int. Conf. on Robotics and Automation, Sacramento, 1991, 1136–1141.Google Scholar
  78. 78.
    Walsh, G., D. Tilbury, S. S. Sastry, R. M. Murray and J.-P. Laumond: Stabilization of trajectories for systems with nonholonomic constraints, Proc. 1992 IEEE Int. Conf. on Robotics and Automation, Nice, 1992, 1999–2004.Google Scholar
  79. 79.
    Sørdalen, O. J. and C. Canudas de Wit: Exponential control law for a mobile robot: Extension to path following, IEEE Trans, on Robotics and Automation, 9 (1993), 837–842.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • A. De Luca
    • 1
  • G. Oriolo
    • 1
  1. 1.University “La Sapienza”RomaItaly

Personalised recommendations