Object-Oriented Modelling of Mechanical Systems

  • A. Kecskeméthy
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 360)


This chapter is dedicated to the application of object-oriented computational techniques to the efficient generation and solution of the governing equations of rigid multibody systems. The overall objective is to sift out intrinsic properties of mechanical components that are amenable to a data-independent representation, and to endow them with a suitable mathematical description that is based on differential-geometric concepts. As a result, a technique for producing intuitive, open, and generic computer modules is developed. These modules can then be used in more sophisticated global tasks, such as control, mechanism optimization or parameter identification. Some code fragments, written in our current C++-implementation MOBILE, are provided for illustration purposes.


Reference Frame Tangent Vector Multibody System Mechanical Component Force Transmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sebesta, R. W., (1989). Concepts of Programming Languages. Ben-jamin/Cummings Publishing Company.MATHGoogle Scholar
  2. 2.
    Kay, A. (1969). “The Reactive Engine”. Ph.D. Thesis, University of Utah.Google Scholar
  3. 3.
    Goldberg, A. and Robson, D. (1984). Smalltalk 80--The Language and lls Implementation. Addison-Wesley Publishing Company, Heading, MA.Google Scholar
  4. 4.
    Stroustrup, B. (1987). The C+ + Programming Language. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company, Reading, MA.MATHGoogle Scholar
  5. 5.
    Wirfs-Brock, R. and Wilkerson, B. (1989). Object-oriented design: A responsibility-driven approach. In OOPSLA ‘89 Proceedings , pages 7175.Google Scholar
  6. 6.
    Hiller, M. and Kecskeméthy, A. (1989). Equations of motion of complex multibody systems using kinematical differentials. ‘Transactions of the (Canadian Society of Mechanical Engineers’, 13(4): 113 121.Google Scholar
  7. 7.
    Hiller, M., Schnelle, K. and van Zanten, A.(1991). Simulation of nonlinear vehicle dynamics with the modular simulation package KASIM. In IASI) Symposium, Lyon.Google Scholar
  8. 8.
    Choquet-Bruhat, Y. and DeWitt-Morette, C. (1989). Analysis, Manifolds and Physics. Part I: Basics. North-Holland, Amsterdam., New York.Google Scholar
  9. 9.
    Berger, M. and Gostiaux, B. (1988). Differential Geometry: Manifolds, Curves, and Surfaces. Graduate Texts in Mathematics 1 15. Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  10. 10.
    Featherstone, R. (1987). Robot Dynamics Algorithms. Kluwer Academic Publishers, Boston, Dordrecht, Lancaster.Google Scholar
  11. 11.
    Woernle, C. (1988). Ein systematisches Verfahren zur Aufstellung der geometrischen Schließbedingungen in kinematischen Schleifen mit Anwendung bei Google Scholar
  12. 12.
    Kecskeméthy, A. and Hiller, M. (1992). Automatic closed-form kinematics-solutions (or recursive single-loop- chains. In Elexrible Mechanisms, Dynamics, and Analysis, Proc. of the 22nd Biennial ASME-Mechanisms Conference, Scottsdale (USA): , pages 387 393.Google Scholar
  13. 13.
    Walker, M. and Orin, D. (1982). Eflicient dynamic computer simulation of robotic mechanisms. Journal of Dynamical Systems, Measurement and Control, KM:205 211.CrossRefGoogle Scholar
  14. 14.
    Pissanetzky, S. (1984). Sparse Matrix Technology. Academic Press.MATHGoogle Scholar
  15. 15.
    Wittenburg, J. (1977). Dynamics of Systems of Rigid Bodies, Leitfäden, der angewandten Mathematik und Mechanik, Band 33. B.G. Teubner, Stuttgart,.CrossRefGoogle Scholar
  16. 16.
    Knuth, D. E. (1973). The Art of Computer Programming. Volume I: Fundamental Algorithms. Addison-Wesley Publishing Company; second edition.Google Scholar
  17. 17.
    Krupp, T. (1992). Objektorientierte Frstcllung der Jacobimatrizen von Mehrkörpersystemen durch Verkettung dünnbesetzter Teilabbildungen Finsatz bei der Generierung der Bewegungsgleichungen. Diplomarbeit, Fachgebiet Mecha-tronik, Universität Duisburg.Google Scholar
  18. 18.
    Waldron, K.(1981). Geomctrically basal manipulator rate control algorithms. Dissertation, Ohio Stair University.Google Scholar
  19. 19.
    Wassermann, R. H. (1992). ‘Tensors and Manifolds. Oxford University Press.Google Scholar
  20. 20.
    Kecskeméthy, A.(1993). Objektorientierte Modellierung der Dynamik von Mchrkörpersyslemen mit Hilfe von Übertraqunqseclement en. Fortschritiberichte VDI, Reihe 20 Nr. SS. VDI-Verlag, Düusseldorf.Google Scholar
  21. 21.
    Kardestuncer, H. (editor) (1987). finite Element Handbook. McGraw-Hill Book (Company.MATHGoogle Scholar
  22. 22.
    Kecskeméthy, A. (1987). Systematisches Aufstellen und Lösen der kinematischen und dynamischen Gleichungen räumlicher Mechanismen. Zeitschrift für angewandte Mathematik und Mechanik, 67:T87–T88.CrossRefGoogle Scholar
  23. 23.
    Nikravesh, P. E. (1988). Computer-Aided Analysis of Mechanical Systems. Prentice-Hall.Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • A. Kecskeméthy
    • 1
  1. 1.G. Mercator University of DuisburgDuisburgGermany

Personalised recommendations