Fundamentals of Rigid-Body Mechanics

  • J. Angeles
  • A. Kecskeméthy
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 360)


In this chapter, we study the kinematics, statics and dynamics of isolated rigid bodies, which will find applications in studying the dynamics of multibody systems. With regard to kinematics, morevoer, we study both finite and infinitesimal motions, i.e., motions of a rigid body characterized by both finite and infinitesimal displacements of its points. Hence, we assume a certain level of familiarity with basic point mechanics. Furthermore, we will resort to basic linear algebra and will thus assume that the reader has been exposed to this discipline.


Rigid Body Position Vector Multibody System Coordinate Frame Rotation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Euler, L. 1776. “Nova methodus motum corporum rigidorum determinandi”, Novii Comentarii Academiæ Scientiarum Petropolitanæ, 20 (1775) 1776: 208–238 = Opera Omnia (2) 9: 99–125.Google Scholar
  2. 2.
    Halmos, P., 1974, Finite-Dimensional Vector Spaces, Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  3. 3.
    Cheng, H. and Gupta, K.C., 1989, “An historical note on finite rotations”, ASME Journal of Applied Mechanics, Vol. 56, pp. 139–142.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Angeles, J. 1982. Spatial Kinematic Chains. Analysis, Synthesis, Optimization, Springer-Verlag, Berlin.CrossRefMATHGoogle Scholar
  5. 5.
    Synge, J. L. (1960) “Classical Dynamics”, in Flügge, S. (editor), Encyclopedia of Physics, Vol. III/1, Springer-Verlag, Berlin-Göttingen-Heidelberg: 1–225.Google Scholar
  6. 6.
    Roth, B., 1984, “Screws, motors, and wrenches that cannot be bought in a hardware store”, in Brady, M. and Pane, R. (editors), Robotics Research. The First International Symposium, the MIT Press, Cambridge (MA), pp. 679–693.Google Scholar
  7. 7.
    Chasles, M., 1830, “Notes sur les propriétés générales de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace, et sur le déplacement fini ou infiniment petit d’un corps solide libre”, Bull. Sci. Math. Ferrusaac, Vol. 14, pp. 321–326.Google Scholar
  8. 8.
    Angeles, I., 1986, “Automatic computation of the screw parameters of rigid-body motions. Part I: Finitely separated positions”, ASME J. of Dynamic Systems. Measurement, and Control, Vol. 108, No. 1, pp. 32–38.CrossRefMATHGoogle Scholar
  9. 9.
    Bottema, O. and Roth, B., 1990, Theoretical Kinematics, Dover Publications, Mineola, N.Y.MATHGoogle Scholar
  10. 10.
    Angeles, J., 1988, Rational Kinematics, Springer-Verlag, New York.CrossRefMATHGoogle Scholar
  11. 11.
    Everett, J. D., 1875, “On a new method in statics and kinematics”, Messenger of Mathematics, Vol. 45, pp. 36–37.Google Scholar
  12. 12.
    Phillips J., 1990, Freedom in Machinery. Vol. 2: Screw Theory Exemplified, Cambridge University Press, Cambridge.Google Scholar
  13. 13.
    von Mises, R., 1924, “Motorrechnung, ein neues Hilfsmittel der Mechanik”, Z. Angewandte Mathematik und Mechanik, Vol. 4, No. 2, pp. 155–181.CrossRefMATHGoogle Scholar
  14. 14.
    Coriolis, G. G., 1835, “Mémoire sur les équations du mouvement relatif des systèmes des corps”, J. Ecole Polytechnique, 15, cahier 24: 142–154.Google Scholar
  15. 15.
    Wang, C.-C., 1979, Mathematical Principles of Mechanics and Electromagnetism. Part A: Analytical and Continuum Mechanics, Plenum Press, New York and London.CrossRefMATHGoogle Scholar
  16. 16.
    Huston, R. L. and Passerello, C. E., 1974, “On constraint equations—A new approach”, ASME J. Applied Mechanics, Vol. 41, pp. 1130–1131.CrossRefGoogle Scholar
  17. 17.
    Hemami, H. and Weimer, F. C., 1981, “Modeling of nonholonomic dynamic systems with applications”, ASME J. Applied Mechanics, Vol. 48, pp. 177–182.CrossRefMATHGoogle Scholar
  18. 18.
    Kahaner, D., Moler, C., and Nash, S., 1989, Numerical Methods and Software. Prentice-Hall Inc., Engelwood Cliffs.MATHGoogle Scholar
  19. 19.
    Papastavridis, J. G., 1990, “Maggi’s equations of motion and the determination of constraint reactions”, J. Guidance, Control, and Dynamics, Vol. 13, No. 2, pp. 213–220.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • J. Angeles
    • 1
  • A. Kecskeméthy
    • 2
  1. 1.McGill UniversityMontrealCanada
  2. 2.G. Mercator University of DuisburgDuisburgGermany

Personalised recommendations