Magneto — And Electrothermoelasticity

  • H. Parkus
Part of the International Centre for Mechanical Sciences book series (CISM, volume 223)


Magneto-electro-thermoelasticity describes the interaction of four fields in an elastic or viscoelastic solid: stress field, displacement field, temperature field and electromagnetic field. There would be additional fields in an oriented medium, but little has been done so far to include effects of this kind in the theory, cf. [1] and [2].


Acceleration Wave Constitutive Assumption Elastic Plane Wave Lorentz Force Density Oriented Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.BAUCHERT: Das elastische Dielektrikum als orientiertes elastisches Kontinumm. Acta Mech. 16 (1973), 65.CrossRefMATHGoogle Scholar
  2. [2]
    J. LENZ: The oriented elastic continuum as a model for the magnetoelastic body. Int. J. Solids Structures 8 (1972), 1235.Google Scholar
  3. [3]
    L. KNOPOFF: The interaction between elastic wave motions and a magnetic field in electrical conductors. J. Geophys. Res. 60 (1955), 441.CrossRefGoogle Scholar
  4. [4]
    H. PARKUS: Magneto— und Elektroelastizität. Z. ang. Math. Mech. 53 (1973), T 18.Google Scholar
  5. [5]
    H. PARKUS: Magneto-Thermoelasticity. CISM Courses and Lectures No. 118. Springer-Verlag Wien-New York 1972.Google Scholar
  6. [6]
    P. PENFIELD, Jr., and H.A. HAUS: Electrodynamics of Moving Media. M.I.T. Press, Cambridge, Mass. 1967.Google Scholar
  7. [7]
    J.B. ALBLAS: Electro-Magneto-Elasticity. In: Topics in Applied Continuum Mechanics (J.L. Zeman and F. Ziegler, editors) Springer-Verlag Wien-NewYork, 1974.Google Scholar
  8. [8]
    K. HUTTER and Y.H. PAO: A dynamic theory for magnetizable elastic solids with thermal and electrical conduction. J. Elasticity (in press).Google Scholar
  9. [9]
    Y.H. PAO and K. HUTTER: Electrodynamics for moving elastic solids and viscous fluids. I.E.E.E.J. (in press).Google Scholar
  10. [10]
    S. CHANDER: Phase velocity and energy loss in magneto-thermo-elastic plane waves. Int. J. Engng Sci. 6 (1968), 409.CrossRefMATHGoogle Scholar
  11. [11]
    P. PURI: Plane waves in thermoelasticity and magnetothermoelasticity. Int. J. Engng Sci 10 (1. 972 ), 467.Google Scholar
  12. [12]
    A.H. NAYFEH and S. NEMAT-NASSER:Electromagneto-Thermoelastic plane waves in solids with thermal relaxation. J. Appl. Mech. 39 (1972), 108.Google Scholar
  13. [13]
    S. KALISKI and W. NOWACKI: Thermal excitations in coupled fields. In: Progress in Thermoelasticity (Editor W.K. Nowacki ), Warsaw (1969).Google Scholar
  14. [14]
    S.K. BAKSHI: On the effect of magneto-thermo-elastic interactions on the cooling process of an infinite circular cylinder. Proc. Camb. Phil, Soc. 67 (1970), 67.CrossRefGoogle Scholar
  15. [15]
    H.S. PAUL and N. MUTHIYALU: Free vibrations of an infinite isotropic magneto-thermo- elastic plate. Acta Mech. 14 (1972), 147.CrossRefMATHGoogle Scholar
  16. [16]
    K. HUTTER and L. PAPP: Wave propagation and attenuation in paramagnetic and soft ferromagnetic materials. (In press).Google Scholar
  17. [17]
    M.F.McCARTHY: Thermodynamic influences on the propagation of waves in electroelastic materials. Int. Engng Sci. 11 (1973), 1301.Google Scholar
  18. [18]
    S. KALISKI and J. PETYKIEWICZ: Equations of motion coupled with the field of temperature in the magnetic field involving mechanical and electro-magneto relaxation for anisotropic bodies. Proc. Vibr. Probi. 4 (1960), 3.Google Scholar
  19. [19]
    M.F. McCARTHY: Thermodynamics of deformable magnetic materials with memory. Int. J. Engng Sci. 12 (1974), 45.CrossRefGoogle Scholar
  20. [20]
    D.S. CHANDRASEKHARIAH: The propagation of magneto-thermo-visco-elastic plane waves in a parallel union of the Kelvin and Maxwell bodies. Proc. Camb. Phil. Soc. 70 (1971), 343.CrossRefMATHGoogle Scholar
  21. [21]
    P. ROY: Disturbances in a perfectly conducting viscoelastic plate in a magnetic field. Bull. Acad. Polon. Sci., série sci. techn. 17 (1969), 233 — [341]. (in press).Google Scholar
  22. [22]
    A. PRECHTL: Creep buckling of plates in a transverse magnetic field. Sitzungsberichte Oesterr. Akademie der Wissensch. Math. —Naturw.Google Scholar
  23. [23]
    H. PARKUS: Constitutive equations of the linear viscoelastic dielectric. In: Trends in Elasticity and Thermoelasticity. Wolters-Noordhoof Publishing 1971, Groningen.Google Scholar
  24. [24]
    H. PARKUS: Constitutive equations for a thermorheologically simple dielectric. L. Sobrero Anniversary Volume. Udine (to appear).Google Scholar
  25. [25]
    J.T. ODEN and B.E. KELLEY: Finite element formulation of general electrothermoelasticity problems. Int. J. Numerical Meth. Engng 3 (1971), 161.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1977

Authors and Affiliations

  • H. Parkus
    • 1
  1. 1.Technical University of ViennaAustria

Personalised recommendations