Advertisement

Thermal Stresses in Anisotropic Bodies

  • Witold Nowacki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 223)

Abstract

Thermoelasticity embraces a wide field of phenomena. It contains the theory of heat conduction and the theory of strain and stresses due to the flow of heat, when coupling of temperature and deformation fields occurs.

Keywords

Thermal Stress Heat Conduction Equation Variational Theorem Orthotropic Plate Reciprocity Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DUHAMEL J.M.C.: Seconde mémoire sur les phénomènes thermomécaniques. J. de l’Ecole Polytechnique 15 (1839), 1 — 15.Google Scholar
  2. [2]
    VOIGT W.: Lehrbuch der Kristallphysik, Teubner, 1910.Google Scholar
  3. [3]
    JEFFREYS H.: The thermodynamics of an elastic solid. Proc. Cambr.Phil. Soc., 26 (1930).Google Scholar
  4. [4]
    BIOT M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl.Phys., 27 (1956).Google Scholar
  5. [5]
    de GROOT S.R.: Thermodynamics of irreversible processes. Amsterdam 1952.Google Scholar
  6. [6]
    BOLEY B.A. and WEINER J.H.: Theory of thermal stresses. John Viley, New York, 1960.MATHGoogle Scholar
  7. [7]
    NEY J.F.: Physical properties of crystals. Oxford, Clarendon Press, 1957.Google Scholar
  8. [8] IONESCU-CAZIMIR V.: Problem of linear Thermoelasticity. Uniqueness theorems (I)
    II), Bull.Acad. Polon.Sci., Série Sci Techn., 12, 12 (1964).Google Scholar
  9. [9]
    IONESCU—CAZIMIR V.: Problem of linear coupled thermoelasticity, (I) (II). Bull.AcAcad. Polon.Sci., Série Sci. Techn. 9, 12 (1964) and 9, 12 (1964).Google Scholar
  10. [10]
    NOWACKI W.: Thermal stresses in anisotropic bodies (I). (in Polish), Arch. Mech. Stos. 3, 6 (1954).Google Scholar
  11. [11]
    MEYSEL V.M.: Temperature problems of the theory of elasticity (in Russian), Kiew, 1951.Google Scholar
  12. [12]
    MOSIL Gr.C.: Matricile asociate sistemelor de ecuatii cu derivate partiale. Introducere in stidiul cercetazilor lui I.N. Lopatinski. Edit. Acadaemiei R.P.R. Bucuresti, (1950).Google Scholar
  13. [13]
    MOSSAKOWSKA Z. and. NOWACKI W.: Thermal stresses in transversely isotropic bodies Arch. Mech. Stos. 4, 10, (1958).Google Scholar
  14. [14]
    NOWACKI W.: The determining of stresses and déformation in transversely isotropic elastic bodies. (in Polish). Arch. Mech. Stos. 5, 4 (1953).Google Scholar
  15. [15]
    HU HAI—CZANG.: On the threedimensional problems of the theory of elasticity of a transversely isotropic body. Acta Sci. Sinica, 2, 2 (1953).Google Scholar
  16. [16]
    STERNBERG E. and MAC DOWELL E.L.: On the steady-state thermoelastic problem for the half-space. Quart. Appl. Math. (1957).Google Scholar
  17. [17]
    CARRIER C.P.: The thermal stress and body force problem of infinite orthotropic solid. Quart. Appl. Math., (1944).Google Scholar
  18. [18]
    GOODIER J.N.: On the integration of the thermoelastic equations. Phil. Mag. VI, 23, (1937), p. 1017.Google Scholar
  19. [19]
    BORS C.I.: Sur le problème à trois dimensions de la thermoelasticité des corps transversalement isotropes. Bull. de l’Acad. Polon. Sci. Ser. Sci. Tech., 11, 5 (1963), 177–181.Google Scholar
  20. [20]
    ELLIOT A.H.: The three-dimensional stress distribution in hexagonal aelo¬tropic crystals. Proc. Cambridge Phil. Soc. 44 (1948), 621–630.MathSciNetGoogle Scholar
  21. [21]
    BORS C.I.: Tensions axiallement symétriques, dans les corps transversalement isotropes. An. stiint. Univ. Iasi, 8, 1, (1962), 119–126.MATHMathSciNetGoogle Scholar
  22. [22]
    SINGH Avtar Axisymmetrical thermal stresses in transversely isotropic bodies. Arch. Mech. Stos. 12, 3, (1960), 287–304.Google Scholar
  23. [23]
    GRINDEI I: Tensiuni termice in medii elastice transversal izotrope. An. stiint. Univ. Iasi, 14, 1, (1968), 169–176.MATHGoogle Scholar
  24. [24]
    SHARMA B.: Thermal stresses in transversely isotropic semi-infinite elastic solids. J. Appl. Mech. 1958.Google Scholar
  25. [25]
    IESAN D.: Tensiuni termice in bare ortho ropic. An. stiint. Univ. Iasi, 12, 2 (1967).Google Scholar
  26. [26]
    IESAN D.: Tensions thermiques dans des barres élastiques non-homogènes. An. stiint. Univ. Iasi, 14, 1 (1968).Google Scholar
  27. [27]
    PELL W.H.: Thermal deflection of anisotropic thin plates. Quart. Appl. Mech., (1946.).Google Scholar
  28. [28]
    MOSSAKOWSKI J.: The state of stress and displacemnt in a thin anisotropic plate to a concentrated source of heat. Arch. Mech. Stos. 9, 5 (1957), p. 595.MathSciNetGoogle Scholar
  29. [29]
    TEODORESCU P.P.: Asupra problemei plane a elasticitatii unor corpuri anizotrope. VIII. Influenta variatiei de temperatura. Corn. Acad. R.P.R. 8, 11 (1958), p. 1119–1126.MathSciNetGoogle Scholar
  30. [30]
    TREMMEL F.: Uber die Anwendung der Plattentheorie zur Bestimmung der Wärmespannungsfelder. Osterr. Ing. Arch. 1957.Google Scholar
  31. [31]
    DUBAS P.: Calcul numérique des plaques et des parois minces, Zürich, 1955.Google Scholar
  32. [32]
    NOWACKI W.: Thermal stresses in orthotropic plates. Bull. de l’Acaad. Polon. Sci., Ser Sci: Techn. 7, 1 (1959), 1–6.Google Scholar
  33. [33]
    BOR§S C.I.: Tensioni termice la corpurile orthotrope in cazul problemelor plane. St. si cerc. stunt. Filiala Iasi Acad. R.P.R. 14, 1 (1963), 187–192.Google Scholar
  34. [34]
    NOWINSKI J., OLSZAK W. and URBANOWSKI W.: On thermoelastic problems in the case of a body of an arbitrary type of curvilinear orthotropy (in polish), Arch. Mech. Stos. 7, 2, (1955), 247–265.MATHMathSciNetGoogle Scholar
  35. [35]
    OLSZAK W.: Autocontraints des milieux anisotropes. Bull. Acad. Polon. Sci Lettr. Cl. Ser. Math. (1950).Google Scholar
  36. [36]
    CHADWICK P. and SEET L.T.C.: Wave propagation in a transversely isotropic heat-conducting elastic material. Mathematika 17, (1970) p. 255.CrossRefMATHMathSciNetGoogle Scholar
  37. [37]
    CHADWICK P. and SEET L.T.C.: Second-order thermoelasticity theory for isotropic and transversely isotropic materials. Trends in Elasticity and Thermoelasticity. Wolters-Nordhoff Publ., Groningen, 1971.Google Scholar

Copyright information

© Springer-Verlag Wien 1977

Authors and Affiliations

  • Witold Nowacki

There are no affiliations available

Personalised recommendations