Non-Linear Viscous Soil Behaviour

  • L. Šuklje
Part of the International Centre for Mechanical Sciences book series (CISM, volume 217)


In classical soil mechanics the deformations of soil bodies are computed according to the theory of elasticity while their safety against failure is examined with the assumption that soils are either elasto-plastic or rigid-plastic bodies. Their viscous properties are disregarded.


Effective Stress Void Ratio Triaxial Test Rheological Model Viscous Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anagnosti, P. (1962). Analiza standardnih metoda ispitivanja osobina zemljanih materijala sa stanovista mehanike neprekidnih sredina (The analysis of the standard methods of testing soil properties from the point of view of the mechanics of continua, in Serbo-Croatian). Thesis, University of Beograd.Google Scholar
  2. [2]
    Barden, L. (1965). Consolidation of clay with non-linear viscosity. Géotechnique 15: 345–362.CrossRefGoogle Scholar
  3. [3]
    Battelino, D. (1973). Oedometer testing of viscous soils. Proc. 8th Int. Conf. Soi Mech. Found. Eng. Moscow, Vol. 1. 1: 25–30.Google Scholar
  4. [4]
    Berre T., and Iversen, K. (1972). Oedometer tests with different specimen heights on clay exhibiting large secondary compression. Géotechnique, 22: 53–70.CrossRefGoogle Scholar
  5. [5]
    Biot, M.A. (1935). Le problème de la consolidation des matières argileuses sous ur charge. Anls Soc. Scient. Brux., B55: 110–113.Google Scholar
  6. [6]
    Biot, M.A. (1941). General theory of three-dimensional consolidation. J. Appl. Phy 12: 155–164.Google Scholar
  7. [7]
    Bishop, A.W. (1955). The principle of effective stress. Teknisk Ukeblad (Oslo), 106 859–863 (1959). (Also published in Norwegian Geotechnical Institute, Publ. 32, Lecture delivered in Oslo in 1955 ).Google Scholar
  8. [8]
    Bjerrum, L. (1967). Seventh Rankine Lecture: Enginering geology of normally consolidated marine clays as related to settlements of buildings. Géotechnique, 17 82–118.Google Scholar
  9. [9]
    Booker, J.R., and Small, J.C. (1977). Finite element analysis of primary and seconda consolidation. Int. J. Solid Structures, Vol. 13: 137–149.Google Scholar
  10. [10]
    Buisman, K.A.S. (1936). Results of long duration settlement tests. Proc. Int. Coi Soil Mech. Found. Eng., Harvard University, 1: 103–106.Google Scholar
  11. [11]
    Chang, T.Y., Ko, H.Y., Scott, R.F., and Westmann, R.A. (1968). Granular Materials, Nonlinear characterization, I I: Nonlinear analysis. Caltech, Pasadena.Google Scholar
  12. [12]
    Darve, F. (1974). Contribution â la determination de la loi rhéologique incrémentale des sols. Thèse, L’Université Scientifique et Médicale de Grenoble, 176 p.Google Scholar
  13. [13]
    de Josselin de.Jong, G. (1957). Application of stress functions to consolidation problems. 4th Int. Conf. Soil Mech. Found. Eng., London, Vol. I: 320–323.Google Scholar
  14. [14]
    de Josselin de Jong, G. (1968). Consolidation models consisting of an assembly of viscous elements or a cavity channel network. Géotechnique, 18: 195–228.CrossRefGoogle Scholar
  15. [15]
    Desai, C.S. (1971). Nonlinear analyses using spline functions. J. Soil Mech. Found. Div., ASCE, Vol. 97, SM 10.Google Scholar
  16. [16]
    Desai, C.S. (1972). State-of-the-art: Overview, trends and projections: Theory and application of the finite element method in geotechnical engineering. US Army Eng. Waterways Exp. Station, Corps of Engineers, Vicksburg, Mississippi, pp. 3–90.Google Scholar
  17. [7]
    Drucker, D.C. (1964). Concept of path independence and material stability for soils. Rheology and Soil Mechanics. IUTAM Symposium Grenoble 1964, 23–46, Springer-V., Berlin.Google Scholar
  18. [18]
    Duncan, J.M., and Chang, Chin-Yung (1970). Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div., ASCE, S5, 1629–1653.Google Scholar
  19. [19]
    Florin, V.A. (1959, 1961 ). Osnovy mekhaniki gruntov (Fundamentals of soil mechanics, in Russian): I(356 p.), II (543 p.), Gosstroyizdat, Leningrad.Google Scholar
  20. [20]
    Folque, J. (1961). Rheological properties of compacted unsaturated soils. Proc. 5th Int. Conf. Soil Mech. Found. Eng., Paris, I: 13–116.Google Scholar
  21. [21]
    Freudenthal, A.M., and Spillers, W.R. (1964). On the consolidating viscoelastic layer under quasi-static loading. IUTAM Symposium Grenoble 1964: Rheology and Soil Mechanics, Springer-Verlag, Berlin, 196–202.Google Scholar
  22. [22]
    Garlanger, J.E. (1972). The consolidation of soils exhibiting creep under constant effective stress, Géotechnique 22: 71–78.CrossRefGoogle Scholar
  23. [23]
    Gibson, R.E., and Lo, K.Y. (1961). A theory of consolidation for soils exhibiting secondary compression. Norwegian Geotechnical Institute, Publ. No. 41.Google Scholar
  24. [24]
    Gibson, R.E., Schiffman, R.I., and Pu, S.L. (1970). Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. Quart. Jour. Mech. Appl. Maths., 23: 4: 505–520.CrossRefMATHGoogle Scholar
  25. [25]
    Hansen, Bent (1969). Cit. after Poorooshasb (1969).Google Scholar
  26. [26]
    Hawley, J.G., and Borin, D.L. (1973). A unified theory for the consolidation of clays. Proc. 8th Int. Conf. Soil Mech. Foun. Eng. Moscow, 1.3: 107–119.Google Scholar
  27. [27]
    Hwang, C.T., Morgenstern, N.R., and Murray, D.W. (1971). On solutions of plain strain consolidation problems by finite element methods. Canadian Geot. Jour., 8: 109–118.Google Scholar
  28. [28]
    Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. Proc. Eur. Conf. Soil Mech. Found. Eng., Wiesbaden, I: 19–26. Discussion, II: 17–21.Google Scholar
  29. [29]
    Kisiel, I., xxxx Lysik, B. (1966). Zarys reologii gruntów (Outline of the rheology of soils, in Polish). Arkady, Warszawa, 315 p.Google Scholar
  30. [30]
    Kondner, R.L. (1963). Hyperbolic stress-strain response: Cohesive soils. J. of the Soil Mech. Found. Div., ASCE, Vol. 89, No. SM 1: 115–143.Google Scholar
  31. [31]
    Kondner, R.L., and Zelasko, J.S. (1963). A hypebolic stress-strain formulation for sands. Proc. 2nd Pan Am. Conf. Soil Mech., Brazil, I: 289–324.Google Scholar
  32. [32]
    Kulhawy, F.H., Duncan, J.M., and Seed, H.B. (1969). Finite element analysis of stresses and movements in embankments during construction. Report No. TR 70–20, Office of Research Services, University of California, Berkeley.Google Scholar
  33. [33]
    Lade, P.V. (1972). The stress-strain and strength characteristics of cohesionless soils. Thesis. University of California, Berkeley.Google Scholar
  34. [34]
    Lade, P.V. (1975). Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. UCLA-Eng-7594, November 1975, Los Angeles, 97 p.Google Scholar
  35. [35]
    Lade, P.V., and Musante, H.M. (1976). Three-dimensional behavior of normally consolidated cohesive soil. UCLA-Eng-7626, April 1976, Los Angeles, 166 p.Google Scholar
  36. [36]
    Majes, B. (1974). Discussion. Proc. 4th Danube European Conf. Soil Mech. Found. Eng., Bled, II: 68–70.Google Scholar
  37. [37]
    Mandel, J. (1957). Consolidation des couches d’argiles. Proc. 4th Int. Conf. Soil Mech, Found. Eng., London, 1: 360–367.Google Scholar
  38. [38]
    Mandel, J. (1961). Tassements produits par la consolidation d’une couche d’argile de grande épaisseur. Proc. 5th Int. Conf. Soil Mech. Found. Eng., Paris, 1: 733–736.Google Scholar
  39. [39]
    Masson, R. McMillan (1971). Nonlinear characterization and stress analysis in a granular material. Thesis. University of Colorado, Dept. Civ. xxxx Envir. Eng., 222 p.Google Scholar
  40. [40]
    Mc-Namee, J., and Gibson, R.E. (1960). Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum. Quarterly Journal of Mechanics and Applied Mathematics, 210–227.Google Scholar
  41. [41]
    Ozawa Yoshio (1973). Elasto-plastic finite element analysis of soil deformation. Dissertation. University of California, Berkeley, 275 p.Google Scholar
  42. [42]
    Palmerton, J.B. (1972). Creep analysis of Atchafalaya levee foundation. Proceedings of the Symposium on Applications of the finite element method in geotechnical engineering, Vicksburg, Mississippi, 843–862.Google Scholar
  43. [43]
    Poorooshasb, H.B. (1969). Advances in consolidation theories for clays. Proc. 7th Int. Conf. Soil Mech. Found. Eng., Mexico, 3: 491–497.Google Scholar
  44. [44]
    Pregl, O. (1974). Die Grundlagen eines Stoffgesetzes für Böden. Mitteilungen des Insitutes für Geotechnik und Verkehrsbau, Hochschule für Bodenkultur, Wien, Reihe Geotechnik, Heft 4, 1–225.Google Scholar
  45. [45]
    Roscoe, K.H., Schofield, A.N., and Wroth, E.P. (1958). On the yielding of soils. Géotechnique, 8: 22–53.CrossRefGoogle Scholar
  46. [46]
    Saje, M. (1974). Discussion. Proc. 4th Danube European Conf. Soil Mech. Found. Eng., Bled, II: 82–83.Google Scholar
  47. [47]
    Sandhu, R.S., and Wilson, E.L. (1969). Finite element analysis of seepage in elastic media. Jour. Eng. Mechs. Div., ASCE, 95, SM 1, 285–312.Google Scholar
  48. [48]
    Schiffman, R.L., Chen, A.T.F., and Jordan, J.C. (1969). An analysis of consolidation theories. Jour. Soil. Mech. and Found. Div., ASCE, 95, SM 1, 285–312.Google Scholar
  49. [49]
    Singh, A., and Mitchell, J.K. (1968). General stress-strain-time functions for soils. J. of the Soil Mech. Found. Div., ASCE, Vol. 94, SM 1, 21–46.Google Scholar
  50. [50]
    Stroganov, A.S. (1963). One-dimensional deformation of soil as nonlinear visco-elastic medium. Proc. European Conf. Soil Mech. Found. Eng., Wiesbaden, I: 55–60.Google Scholar
  51. [51]
    Šuklje, L. (1957). The analysis of the consolidation process by the isotache method. Proc. 4th Int. Conf. Soil Mech. Found. Eng., London, I: 200–206, III: 107–109.Google Scholar
  52. [52]
    Šuklje, L. (1967). Common factors controlling the consolidation and the failure of soils. Proc. Geotechn. Conf. Oslo, I: 153–158.Google Scholar
  53. [53]
    Suklje, L., and Kogovsek, B. (1968). Isochrones of a uniformly loaded layer of viscous soils. III Sesja Naukowa Wydzialu Budownictwa Ladovego Politechniki Wroclawskiej 1968 r., Referaty I: 369–380.Google Scholar
  54. [54]
    guklje, L. (1969-a). Rheological aspects of soil mechanics. Wiley Interscience, London, 571 p.Google Scholar
  55. [55]
    Suklje, L. (1969-b). Consolidation of viscous soils subjected to continuously increasing uniform load. “New Advances in Soil Mechanics”, Czechoslovak Scientific and Technical Society, Prague, I: 199–235.Google Scholar
  56. [56]
    Suklje, L., and Simonóió, M. (1972). The use of isotaches in the numerical analysis of radial consolidation. University of Ljubljana, Acta Geotechnica, No. 41: 1–57.Google Scholar
  57. [57]
    Suklje, L. (1972, 1973 ). Discussions to J.E. Garlanger’s paper: The consolidation of soils exhibiting creep under constant effective stress. Géotechnique 22: 670–673, Géotechnique 23: 283–284.Google Scholar
  58. [58]
    Suklje, L. (1973). The use of isotaches in the consolidation analysis. Proc. 8th Int. Conf. Soil Mech. Found. Eng., Moscow, Vol. 4. 3: 116, 62–63.Google Scholar
  59. [59]
    Suklje, L., and Kozak, J. (1974). Consolidation of partly saturated viscous soils. University of Ljubljana, Acta Geotechnica, No. 54: 1–20.Google Scholar
  60. [60]
    Suklje, L., and Kovačič, I. (1974). The role of the effective stress speed in the consolidation analysis. Proceedings of the 4th Dann’,, -European Conference on Soil Mechanics and Foundation Engineering, Bled 1974, Vol. 1: 233–240.Google Scholar
  61. [61]
    Suklje, L., and Majes, B. (1975). Devefovment of displacements in the viscous plane-strain space. University of Ljubljana, A,.a Geotechnica, No. 58: 1–13.Google Scholar
  62. [62]
    Suklje, L. (1977). Stresses and strains in non-linear viscous soils. Forwarded for publication in Numerical and Analytical Method in Geomechanics, London, New York.Google Scholar
  63. [63]
    Suklje L., and Kovačič, I. (1978). Consolidation of drained stratified viscous soils. Forwarded for publication in the Proceedings of the Engineering Foundation Conference on Evaluation and Prediction of Subsidence, Pensacola Beach, Florida, January 1978.Google Scholar
  64. [64]
    Tan, Tjong-Kie (1954). Onderzoekingen over de rheologische eigenschappen van klei ( Investigations on the rheological properties of clay, in Dutch with English summary ). Uitgeverij Excelsior, ‘s-Gravenhage, 152 p.Google Scholar
  65. [65]
    Tan, Tjong-Kie (1957). Three-dimensional theory on the consolidation and flow of the clay layers. Scientia Sinica, 6, No. 1: 203–215.Google Scholar
  66. [66]
    Taylor, D.W., and Merchant, W. (1940). A theory of clay consolidation accounting for secondary compression. J. Maths and Physics, 19: 167–185.Google Scholar
  67. [67]
    Taylor, D.W. (1942). Research on consolidation of clays. Dept. of Civil and Sanitary Eng., MIT, PubL Serial 82: 1–147.Google Scholar
  68. [68]
    Terzaghi, K. (1923). Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Sitzungsber. Akad. Wiss. Wien, mathem. -naturw. KL, Abt. II a, 132 Bd., 3.u. 4.H.Google Scholar
  69. [69]
    Vidmar, S. (1974). Discussion. Proc. 4th Danube-European Conf. Soil Mech. Found. Eng., Vol. II: 67–68.Google Scholar
  70. [70]
    Vyalov, S.S. (1963). Reologiya merzlykh gruntov (Rheology of;zen soils, in Russian), Prochnost i polzuchest merzylch gruntov. Izd. Akad. nauk SSSR, Moskva, 5–54.Google Scholar
  71. [71]
    Zaretsky, Yu. K. (1967). Teoriya konsolidatsii gruntov (Theory of consolidation of soils, in Russian). Izd. Nauka, Moskva, 270 p.Google Scholar
  72. [72]
    Zienkiewicz, O.C., and Naylor, D.J. (1971). The adaption of critical state soil mechanics theory for use in finite elements. Stress-strain Behaviour of Soils ( The Roscoe Memorial Symposium ), Cambridge University, 537–547.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • L. Šuklje
    • 1
  1. 1.University of LjubljanaSlovenia

Personalised recommendations