Shape Memory Alloy

A Thermomechanical Macroscopic Theory
  • M. Frémond
Part of the International Centre for Mechanical Sciences book series (CISM, volume 351)


Shape memory alloys are mixtures of many martensites and of austenite. The composition of the mixture varies: the matensites and the austenite transform into one another. These phase changes can be produced either by thermal actions or by mechanical actions. The striking and well known properties of shape memory alloys results from these links between mechanical and thermal actions [4], [15], [26].


Shape Memory Alloy Internal Force Shape Memory Effect Medium Temperature State Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Abeyaratne, J. Knowles, A continuum model of thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids, vol 41, n° 3, pp. 541–571, 1993.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    M. Achenbach, A model for an alloy with shape memory, International Journal of plasticity, vol. 5, pp. 371–395, 1989.CrossRefGoogle Scholar
  3. [3]
    M. Achenbach, I. Müller, Simulation of material behavior of alloys with shape memory, Arch. Mech., 37, 6, pp. 573–585, 1985.Google Scholar
  4. [4]
    C. Berriet, C. Lexcellent, B. Raniecki, A. Chrysochoos, Pseudoelastic behaviour analysis by infrared thermography and resistivity measurements of polycristalline shape memory alloys, ICOMAT 92, Monterey, 1992.Google Scholar
  5. [5]
    A. Chrysochoos, H. Pham, O. Maisonneuve, Une analyse expérimentale du comportement d’un alliage à mémoire de forme dé type Cu-Zn-Al, C. R. Acad. Sci., tome 316, série II, pp. 1031–1036, Paris, 1993.Google Scholar
  6. [6]
    A. Chrysochoos, M. Löbel, O. Maisonneuve, Couplages thermécaniques du comportement pseudoélastique d’alliages Cu-Zn-Al et Ni-Ti, C. R. Acad. Sci., tome 320, série IIb, pp. 217–223, Paris, 1994.Google Scholar
  7. [7]
    J.M. Ball, R.D. James, Theory for the microstructure of martensite and applications, Proc. Inter. Conf. on Martensitic Transformations, C.M. Wayman, J. Perkings eds, Monterey, 1992.Google Scholar
  8. [8]
    P. Colli, M. Frémond, A. Visintin, Thermomechanical evolution of shape memory alloys, Quaterly of applied mathematics, Vol XLVIII, n° 1, pp. 31–47, 1990.Google Scholar
  9. [9]
    F. Falk, Landau theory and martenstic phase transition, Journal de Physique; Colloque C4, Supplément au n° 12, tome 43, 1982.Google Scholar
  10. [10]
    M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci., tome 304, série II, n°7, pp. 239–244, Paris, 1987.Google Scholar
  11. [11]
    M. Frémond, Shape memory alloys. A thermomechanical model, in Free boundary problems: theory and application ( K.H. Hoffmann, J. Spreckels eds), Pittman, Longman, Harlow, 1988.Google Scholar
  12. [12]
    M. Frémond, Sur l’inégalité de Clausius-Duhem, C. R. Acad. Sci., tome 311, serie II, pp. 757–762, Paris, 1990.Google Scholar
  13. [13]
    M. Frémond, B. Nedjar, Endommagement et principe des puissances virtuelles, C. R. Acad. Sci., tome 317, serie II, n° 7, pp. 857–864, Paris, 1993.Google Scholar
  14. [14]
    P. Germain, Mécanique, Ellipses, Paris, 1986.Google Scholar
  15. [15]
    G. Guénin, Alliages à mémoire de forme, Techniques de l’ingénieur, M 530, Paris, 1986.Google Scholar
  16. [16]
    H. Ghidouche, N. Point, Unilateral contact with adherence, in Free boundary problems: theory and application ( K.H. Hoffmann, J. Spreckels eds), Pittman, Longman, Harlow, 1988.Google Scholar
  17. [17]
    R.D. James, D. Kinderleherer, Theory of diffusionless phase transformation, Lectures notes in physics 344 ( M. Rascle, D. Serre, M. Slemrod eds), Springer-Verlag, Heidelberg, 1990.Google Scholar
  18. [18]
    S. Leclercq, De la modélisation thermomécanique et de l’utilisation des alliages à mémoire de forme, thèse de l’Université de Franche-Comté, Besançon, 1995.Google Scholar
  19. [19]
    C. Lexcellent, C. Licht, Some remarks on the modelling of the thermomechanical behaviour of shape memory alloys, Journal de Physique, Colloque C4, vol. 1, pp. 35–39, 1991.Google Scholar
  20. [20]
    J.J. Moreau, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles, Collège de France, Paris, 1966.Google Scholar
  21. [21]
    J.J. Moreau, Sur les lois de frottement, de viscosité et de plasticité, C. R. Acad. Sci., vol. 271, pp. 608–611, Paris, 1970.Google Scholar
  22. [22]
    I. Müller, H. Xu, On pseudoelastic hysteresis, Acta Metall. Mater., 39, 1991.Google Scholar
  23. [23]
    I. Müller, Pseudo elasticity in shape memory alloys. An extreme case of thermoelasticity. Proc. Thermoelasticita Finita, Acc. Naz. dei Lincei, May/June 1985.Google Scholar
  24. [24]
    M. Niezgodka, J. Sprekels, Convergent numerical approximation of the thermomechanical phase transitions in shape memory alloys, to appear.Google Scholar
  25. [25]
    Nguyen Quoc Son, Z. Moumni, Sur une modélisation du changement de phases solides, C. R. Acad. Sci., serte II, Paris, 1995.Google Scholar
  26. [26]
    E. Patoor, M. Berveiller, Les alliages à mémoire de forme, Hermès, Paris, 1990.Google Scholar
  27. [27]
    H. Pham, Analyse thermomécanique d’un alliage à mémoire de forme de type Cu-Zn-Al, thèse de l’Université des Sciences et des Techniques du Languedoc, Montpellier, 1994.Google Scholar
  28. [28]
    P. Podio-Guidugli, G.V. Caffarelli, Equilibrium phases and layered phase mixtures in elasticity, to appear.Google Scholar
  29. [29]
    B. Ranieckì, C. Lexcellent, K. Tanaka, Thermodynamics models of pseudoelastic behaviour of shape memory alloys, Arch. Mech., 44, 3, pp. 261–284, 1992.MATHMathSciNetGoogle Scholar
  30. [30]
    J. Sprekels, Global existence for thermomechanical process with non convex free energies of Ginzburg-Landau form, J. Math. Anal. Appl.Google Scholar
  31. [31]
    J. Sprekels, Shape memory alloys: mathematical models for a class of first order solid-solid phase transition in metals, Control and cybernetics, vol. 19, n° 3, 4, 1990.MathSciNetGoogle Scholar
  32. [32]
    J.M.T. Tien, L’adhèrence des solides, thèse de l’Université Pierre et Marie Curie, Paris, 1990.Google Scholar
  33. [33]
    G. Wörsching, Ph.D thesis, Augsburg University, 1994.Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • M. Frémond
    • 1
  1. 1.Lab. des Matériaux et Structures du Génie CivilChamps sur MarneFrance

Personalised recommendations