Skip to main content

Shape Memory Alloy

A Thermomechanical Macroscopic Theory

  • Chapter
Shape Memory Alloys

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 351))

Abstract

Shape memory alloys are mixtures of many martensites and of austenite. The composition of the mixture varies: the matensites and the austenite transform into one another. These phase changes can be produced either by thermal actions or by mechanical actions. The striking and well known properties of shape memory alloys results from these links between mechanical and thermal actions [4], [15], [26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abeyaratne, J. Knowles, A continuum model of thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids, vol 41, n° 3, pp. 541–571, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Achenbach, A model for an alloy with shape memory, International Journal of plasticity, vol. 5, pp. 371–395, 1989.

    Article  Google Scholar 

  3. M. Achenbach, I. Müller, Simulation of material behavior of alloys with shape memory, Arch. Mech., 37, 6, pp. 573–585, 1985.

    Google Scholar 

  4. C. Berriet, C. Lexcellent, B. Raniecki, A. Chrysochoos, Pseudoelastic behaviour analysis by infrared thermography and resistivity measurements of polycristalline shape memory alloys, ICOMAT 92, Monterey, 1992.

    Google Scholar 

  5. A. Chrysochoos, H. Pham, O. Maisonneuve, Une analyse expérimentale du comportement d’un alliage à mémoire de forme dé type Cu-Zn-Al, C. R. Acad. Sci., tome 316, série II, pp. 1031–1036, Paris, 1993.

    Google Scholar 

  6. A. Chrysochoos, M. Löbel, O. Maisonneuve, Couplages thermécaniques du comportement pseudoélastique d’alliages Cu-Zn-Al et Ni-Ti, C. R. Acad. Sci., tome 320, série IIb, pp. 217–223, Paris, 1994.

    Google Scholar 

  7. J.M. Ball, R.D. James, Theory for the microstructure of martensite and applications, Proc. Inter. Conf. on Martensitic Transformations, C.M. Wayman, J. Perkings eds, Monterey, 1992.

    Google Scholar 

  8. P. Colli, M. Frémond, A. Visintin, Thermomechanical evolution of shape memory alloys, Quaterly of applied mathematics, Vol XLVIII, n° 1, pp. 31–47, 1990.

    Google Scholar 

  9. F. Falk, Landau theory and martenstic phase transition, Journal de Physique; Colloque C4, Supplément au n° 12, tome 43, 1982.

    Google Scholar 

  10. M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci., tome 304, série II, n°7, pp. 239–244, Paris, 1987.

    Google Scholar 

  11. M. Frémond, Shape memory alloys. A thermomechanical model, in Free boundary problems: theory and application ( K.H. Hoffmann, J. Spreckels eds), Pittman, Longman, Harlow, 1988.

    Google Scholar 

  12. M. Frémond, Sur l’inégalité de Clausius-Duhem, C. R. Acad. Sci., tome 311, serie II, pp. 757–762, Paris, 1990.

    Google Scholar 

  13. M. Frémond, B. Nedjar, Endommagement et principe des puissances virtuelles, C. R. Acad. Sci., tome 317, serie II, n° 7, pp. 857–864, Paris, 1993.

    Google Scholar 

  14. P. Germain, Mécanique, Ellipses, Paris, 1986.

    Google Scholar 

  15. G. Guénin, Alliages à mémoire de forme, Techniques de l’ingénieur, M 530, Paris, 1986.

    Google Scholar 

  16. H. Ghidouche, N. Point, Unilateral contact with adherence, in Free boundary problems: theory and application ( K.H. Hoffmann, J. Spreckels eds), Pittman, Longman, Harlow, 1988.

    Google Scholar 

  17. R.D. James, D. Kinderleherer, Theory of diffusionless phase transformation, Lectures notes in physics 344 ( M. Rascle, D. Serre, M. Slemrod eds), Springer-Verlag, Heidelberg, 1990.

    Google Scholar 

  18. S. Leclercq, De la modélisation thermomécanique et de l’utilisation des alliages à mémoire de forme, thèse de l’Université de Franche-Comté, Besançon, 1995.

    Google Scholar 

  19. C. Lexcellent, C. Licht, Some remarks on the modelling of the thermomechanical behaviour of shape memory alloys, Journal de Physique, Colloque C4, vol. 1, pp. 35–39, 1991.

    Google Scholar 

  20. J.J. Moreau, Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles, Collège de France, Paris, 1966.

    Google Scholar 

  21. J.J. Moreau, Sur les lois de frottement, de viscosité et de plasticité, C. R. Acad. Sci., vol. 271, pp. 608–611, Paris, 1970.

    Google Scholar 

  22. I. Müller, H. Xu, On pseudoelastic hysteresis, Acta Metall. Mater., 39, 1991.

    Google Scholar 

  23. I. Müller, Pseudo elasticity in shape memory alloys. An extreme case of thermoelasticity. Proc. Thermoelasticita Finita, Acc. Naz. dei Lincei, May/June 1985.

    Google Scholar 

  24. M. Niezgodka, J. Sprekels, Convergent numerical approximation of the thermomechanical phase transitions in shape memory alloys, to appear.

    Google Scholar 

  25. Nguyen Quoc Son, Z. Moumni, Sur une modélisation du changement de phases solides, C. R. Acad. Sci., serte II, Paris, 1995.

    Google Scholar 

  26. E. Patoor, M. Berveiller, Les alliages à mémoire de forme, Hermès, Paris, 1990.

    Google Scholar 

  27. H. Pham, Analyse thermomécanique d’un alliage à mémoire de forme de type Cu-Zn-Al, thèse de l’Université des Sciences et des Techniques du Languedoc, Montpellier, 1994.

    Google Scholar 

  28. P. Podio-Guidugli, G.V. Caffarelli, Equilibrium phases and layered phase mixtures in elasticity, to appear.

    Google Scholar 

  29. B. Ranieckì, C. Lexcellent, K. Tanaka, Thermodynamics models of pseudoelastic behaviour of shape memory alloys, Arch. Mech., 44, 3, pp. 261–284, 1992.

    MATH  MathSciNet  Google Scholar 

  30. J. Sprekels, Global existence for thermomechanical process with non convex free energies of Ginzburg-Landau form, J. Math. Anal. Appl.

    Google Scholar 

  31. J. Sprekels, Shape memory alloys: mathematical models for a class of first order solid-solid phase transition in metals, Control and cybernetics, vol. 19, n° 3, 4, 1990.

    MathSciNet  Google Scholar 

  32. J.M.T. Tien, L’adhèrence des solides, thèse de l’Université Pierre et Marie Curie, Paris, 1990.

    Google Scholar 

  33. G. Wörsching, Ph.D thesis, Augsburg University, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

Frémond, M. (1996). Shape Memory Alloy. In: Shape Memory Alloys. International Centre for Mechanical Sciences, vol 351. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4348-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4348-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82804-5

  • Online ISBN: 978-3-7091-4348-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics